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1 General description
Continuous time meta-analysis (CoTiMA) performs meta-analyses of correla-
tion matrices of repeatedly measured variables. Since variables are measured at
discrete time points (e.g., today at 4pm, next week on Monday etc.) this im-
poses a problem for meta-analysis of studies that repeatedly measured the vari-
ables because the time intervals between measurement could vary across studies.
However, so-called continuous time math can be used to extrapolate or inter-
polate the results from all studies to any desired time interval. By this, effects
obtained in studies that used different time intervals can be meta-analyzed1.

A critical assumption is the validity of the underlying causal model that
describes the investigated process. CoTiMA is based on a rather general model,
which can be restricted on demand. For instance, for a causal system that
describes how a single variable that is measured repeatedly (e.g., x1, x2, x3,
etc.) develops over time, the default CoTiMA model assumes that x1 affects x2,
x2 affects x3 and so forth. This is called a first order autoregressive structure. In
a two-variable model of x and y, the underlying CoTiMA model is a cross-lagged
model with autoregressive effects for x and y and, in addition, a cross-lagged
effect of xt on yt+1 and of yt on xt+1. More complex models (e.g., including xt
on yt+1 and xt on yt+2) can also be meta-analyzed, but they require user-specific
adaptations. Restricted versions of the default CoTiMA model (e.g., xt on yt+1

but not yt on xt+1) are easier to implement and several specific models (e.g., xt
on yt+1 exactly of the same size as yt on xt+1) could be optionally requested.
Correlations of primary studies serve as an input for CoTiMA and synthesized
(i.e., meta-analytically aggregated) effect sizes represent the output of CoTiMA.

library(devtools)
install_github('CoTiMA/CoTiMA')
library(CoTiMA)

Figure 1: Installing CoTiMA from GitHub

CoTiMA is a package for R (R Core Team, 2020). It can be downloaded from
CRAN (https://cran.r-project.org) using (install.packages(’CoTiMA’)). Af-
ter the devtools R package is installed (install.packages(’devtools’)), the
latest version of the R package CoTiMA can be installed from our GitHub repos-
itory (Dormann & Homberg, 2020) using the code shown in Figure 1. All code
and examples shown in the User’s Guide were performed and tested with R
version 4.0.3 and run using RStudio (RStudio Team, 2020).

The next six pages show how to conduct a CoTiMA. This involves several
1In a nutshell, CoTiMA fits models to empirical data using the structural equation model

(SEM) package ctsem. The effects specified in a SEM are related (contrained) to parameters
that are not directly included in the model (i.e., continuous time parameters; together, they
represent the continuous time structural equation model, CTSEM) which is done in a fashion
similar to other SEM programs (e.g., like a = b × c to test for mediation in MPLUS) using
matrix algebra functions (e.g., matrix exponentiation, which is not available in MPLUS), and
statistical model comparisons and significance tests are performed on the continuous time
parameter estimates. For details see Dormann, Guthier, and Cortina (2020).
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steps starting with entering primary study information (correlations etc.), initial
fitting of a ctsem model to each primary study, fitting the CoTiMA, and plotting
the results2.

2 A CoTiMA Example
To prepare a CoTiMA, users have to supply information about the primary stud-
ies to be meta-analyzed. Primary study information has to be stored into ‘ob-
jects’ (everything in R is an object). Some objects have pre-defined names and
are either always mandatory (delta_ti ), mostly mandatory (sampleSizei ,
empcovi ), or optional (pairwiseNi , studyNumberi , moderatori , etc., with i
indicating the study number). User-defined object names could be added (e.g.,
criticalRemarki ).

empcov2 <- matrix(c(1.00, 0.45, 0.57, 0.18,
0.45, 1.00, 0.31, 0.66,
0.57, 0.31, 1.00, 0.40,
0.18, 0.66, 0.40, 1.00), nrow=4, ncol=4)

delta_t2 <- 12
sampleSize2 <- 148

empcov3 <- matrix(c(1.00, 0.43, 0.71, 0.37,
0.43, 1.00, 0.34, 0.69,
0.71, 0.34, 1.00, 0.50,
0.37, 0.69, 0.50, 1.00), nrow=4, ncol=4)

delta_t3 <- 12
sampleSize3 <- 88

empcov313 <- matrix(c(1.00, 0.38, 0.54, 0.34, 0.60, 0.28,
0.38, 1.00, 0.34, 0.68, 0.28, 0.68,
0.54, 0.34, 1.00, 0.47, 0.66, 0.39,
0.34, 0.68, 0.47, 1.00, 0.38, 0.72,
0.60, 0.28, 0.66, 0.38, 1.00, 0.38,
0.28, 0.68, 0.39, 0.72, 0.38, 1.00), nrow=6, ncol=6)

delta_t313 <- c(1.5, 1.5)
sampleSize313 <- 335

Figure 2: Entering information of three primary studies

The present example of a small but nevertheless full CoTiMA is based on
two variables (Variable 1 = V1, Variable 2 = V2). They were measured in three
primary studies. The cross-lagged effects of earlier V1 on later V2 (V1toV2)

2When it is desired, all R objects created in the following examples (e.g., empocv2, delta_t2,
etc. in Figure 2 or CoTiMAstudyList_3 in Figure 3) can be created in the user’s R environ-
ment in two ways. First, the code could be copied directly from this User Guide and then run.
Second, the objects are ’invisible’ but actually available in the package:CoTiMA environment.
For example, empcov2 <- empcov2 copies empcov2 into the global environment. Afterwards,
rm(empcov2) removes empcov2 from the global environment, but it still available in the pack-
age:CoTiMA environment. Objects that are available in the package:CoTiMA environment
only but nut in the global environment are not used when the user performs any CoTiMA
analyses.
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and vice versa (V1toV2) are meant to be meta-analyzed. The first two studies,
which are numbered ’2’ and ’3’ in our database, both comprise two variables
measured at two measurement occasions, which results in a correlation matrix
with four rows (nrow=4) and four columns (ncol=4; i.e., a 4 × 4 correlation
matrix; see Figure 2). The correlations reported in primary studies are stored
in the objects empcov2 and empcov3, respectively. The third Study 313 has
three waves of measurements and the empirical correlation matrix of Study 313
has, therefore, 6 × 6 entries. The order of the variables has to be V1 at Time 0,
V2 at Time 0, V1 at Time 1, and V2 at Time 1 etc. Note that in the continuous
time literature it is common to number time points starting with 0. In the
automatically generated output files, these two variables are labeled “V1” and
“V2”. The matrices have to be symmetric. Lack of symmetry is automatically
detected by CoTiMA, a warning is issued, and processing is interrupted.

In addition to correlation matrices, a CoTiMA requires further informa-
tion. Researchers need to provide time intervals (delta_ti ) and sample sizes
(sampleSizei ). Primary Study 2 had a time lag of 12 months, which is stored
in the object delta_t2 (see Figure 2). One could also use 1.0 to indicate a 1.0
year lag. Any time scale is possible, but it has to be used consistently across
primary studies. It is recommended using a time scale that allows assigning
a value of 6 or less to the longest of all time intervals. For example, if the
longest time lag was 10 years, it is recommended to use the number of 5-year
intervals as the time scale, and to assign the value 2 to delta_ti if Study i
had a 10-year interval. Since Study 313 had three waves of observations, the
corresponding two time intervals have to be provided as vector (delta_t313 <-
c(1.5, 1.5)).

Primary Study 2 further had a sample size of 148, which is stored in the
object sampleSize2 (not sampleSize0 2). In cases in which the correlation
matrix includes correlations based on pairwise deletion of missing values, sample
sizes vary between correlations, too. This could be specified as explained later.

CoTiMAstudyList_3 <- ctmaPrep(selectedStudies = c(2, 3, 313))

Figure 3: Compiling a list of primary studies (ctmaPrep)

After all primary study information was entered, the next step is to compile
them into a list3 and store this list as an R object. This is done with the
ctmaPrep function included in CoTiMA. The created list object (e.g., CoTiMA-
studyList_3 in Figure 3) could be inspected as we shall see later. For the
moment, it is sufficient to just have it available. Note that all functions provided
by the CoTiMA R package start with ’ctma’ such as ctmaPrep. In general, we
label the objects to store the results delivered by the ctma-functions starting
with “CoTiMA”, such as CoTiMAstudyList_3.

After a list of primary study information has been complied with ctmaPrep,
the next step is to fit a ctsem model to each primary study in a series of separate

3A list is a particular R object that is useful to collect a variety of information such as
values, vectors, matrices, names etc.)
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activeDirectory <- "/Users/cdormann/CoTiMA Users Guide/"
coresToUse = 1 # SET THIS TO 1 INSTEAD OF -1 IF YOU ARE USING WINDOWS

CoTiMAInitFit_3 <- ctmaInit(primaryStudies = CoTiMAstudyList_3,
n.latent = 2,
activeDirectory = activeDirectory,
coresToUse = coresToUse)

summary(CoTiMAInitFit_3)
saveRDS(CoTiMAInitFit_3, paste0(activeDirectory, "CoTiMAInitFit_3.rds"))

Figure 4: Fitting a ctsem model to each primary study (ctmaInit).

models. This step is mandatory for subsequent CoTiMA for several reasons.
One of the most important reason is that at this stage one could check the
results and identify possible problems with the data entered.

The use of ctmaInit is shown in Figure 4. Before using ctmaInit, specify
the activeDirectory (where to save results) and the number of computer cores
to be used (-1 indicates all cores except 1). This can then be copied into all
subsequent function calls. ctmaInit requires the number of latent variables per
measurement occasion (in most cases probably identical to the overall number
of variables) to be provided by the user as well as an activeDirectory, which
is where ctmaInit will save the fitted models. In this case, the fitted models
in stored in an Init-Fit object named CoTiMAInitFit_3, which can be saved to
disk with saveRDS. Using summary(CoTiMAInitFit_3) displays the results, of
which we selected the most intersting results in Figure 54, 5.

## V1toV1 SE V2toV1 SE
## Study No 2 "Reference not provided" "-0.0537" "0.0111" "0.0117" "0.0105"
## Study No 3 "Reference not provided" "-0.0323" "0.0134" "0.0049" "0.0106"
## Study No 313 "Reference not provided" "-0.4126" "0.0452" "0.1453" "0.0376"
## V1toV2 SE V2toV2 SE
## Study No 2 "-0.0202" "0.009" "-0.0254" "0.0078"
## Study No 3 "0.0102" "0.0097" "-0.0358" "0.0097"
## Study No 313 "0.0939" "0.0377" "-0.2823" "0.0359"

Figure 5: ctsem results (summary(CoTiMAInitFit_3)).

The output in Figure 5 displays the so-called drift effects. The two auto ef-
fects (V1toV1 & V2toV2 ) are negative as one would expect in continuous time

4Note that if computations are reproduced, the results are unlikely to be exactly the same
because parameters and their standard errors are drawn from 1.000 parameter samples by
default for final results computation. Using the argument finishsamples = 10000 or larger
numbers would make results reproducible with any desired precision.

5Note that CoTiMA could handle a range of time intervals by default; we have experienced
few problems with time intervals from .01 to 16. However depending on the time scale used, one
has to use the argument scaleTime = 1/t , with t being a reasonable number. For instance,
suppose one’s time scale is one week. An average year has (365.25)/4 = 52.1786 weeks. If
the longest time interval among the primary studies was 16years, this would correspond to
delta_ti = 834.8576. Using scaleTime = 1/52.1786 would probably ensure getting proper
results. Contrary, without adapting the time scale, one would probably see several warning
or error messages during the fitting process, and the results should not be trusted.
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modelling - we explain this later in Section 6. The two cross effects are mostly
positive. Note that an effect is regarded as significant if its size is more than
1.96 times its standard error (SE). However, confidence intervals (or credible
intervals in case Bayesian estimation is chosen) are easily available, too, and
should be preferred. All of this – and a bit more – is displayed after entering
summary(CoTiMAInitFit_3). We do not show the output here due to space
reasons. The study numbers are repeated as row names. “Reference not pro-
vided” just indicates that, yes, we did not provide a reference for each study,
which would improve readability of the table. We explain later how to provide
references for labeling the output.

The fit object CoTiMAInitFit_3 resulting from applying the ctmaInit func-
tion to the list of compiled studies CoTiMAstudyList_3 can then be used for
aggregating (i.e., meta-analyzing) drift effects, performing moderator analyses,
estimating publication bias, calculation of expected power and required samples
sizes for different time intervals, plotting, and much more. In virtually all cases,
the CoTiMA functions to perform these tasks take CoTiMAInitFit_3 as the
first (and only required) argument.

A full CoTiMA, with ‘full’ indicating that all drift parameters are simul-
taneously aggregated, is conducted by the code in Figure 6. Note that the
activeDirectory is copied from CoTiMAInitFit if not provided as an argu-
ment to ctmaFit.

CoTiMAFullFit_3 <- ctmaFit(ctmaInitFit = CoTiMAInitFit_3,
coresToUse = coresToUse)

summary(CoTiMAFullFit_3)

Figure 6: Conducting a full CoTiMA (ctmaFit)

The summary function displays a couple of results that we present here
in reduced format and in two subsequent steps. Results not shown here are
explained later in Section 7.

We reduced the $estimates section in Figure 7 compared to the actual
output displayed on screen. Reason is that among the whole lot of estimates
presented, only the four drift effects are of major interest. These are the meta-
analytically aggregated effects as indicated by the additional label ’invariant’.
Invariant means that this effect does not vary among primary studies and only
one overall effect is estimated. This is similar to fixed effect analysis, where it is
also assumed that a single overall (true) effect exists. This is what one usually
wants from CoTiMA. We are done. All drift effects are significant by means of
the T-values as well as by virtue of their confidence intervals.

## row col Mean sd 2.5% 50% 97.5% Tvalues
## DRIFT V1toV1 (invariant) 1 1 -0.3867 0.0464 -0.4841 -0.3841 -0.3024 -8.3280
## DRIFT V2toV1 (invariant) 1 2 0.2291 0.0327 0.1657 0.2289 0.2942 7.0092
## DRIFT V1toV2 (invariant) 2 1 0.1158 0.0350 0.0468 0.1156 0.1841 3.3087
## DRIFT V2toV2 (invariant) 2 2 -0.1378 0.0341 -0.2142 -0.1341 -0.0824 -4.0385

Figure 7: First part of summary(CoTiMAFullFit_3)
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## $minus2ll
## [1] 7325.971
##
## $n.parameters
## [1] 22
##
## $opt.lag
## [,1] [,2]
## [1,] NA 6
## [2,] 6 NA
##
## $max.effects
## [,1] [,2]
## [1,] NA 0.3656
## [2,] 0.1848 NA

Figure 8: Second part of summary(CoTiMAFullFit_3)

The second part of the output generated by summary(CoTiMAFullFit_3)
is shown in Figure 8. It displays the minus 2 loglikelihood (-2ll) value and
the number of estimated parameters (both become important when researchers
want to compare nested models), and the optimal lag in terms of Dormann and
Griffin (2015) across which the effects become largest. The previous output in
Figure 7 informed us that the effect of V1toV2 is located in Row 2 and Column
1 and, conversely, the effect of V2toV1 is located in Row 1 and Column 2. In
this case, the optimal lag is six months for both effects, where the effects (see
$max.effects) become .3669 for V2toV1 and .1850 for V1toV2. The latter
seems to be much smaller than the former, and we explain later how to test this
statistically.

Effects in continuous time are difficult to interpret. Therefore, they are
usually back-translated into discrete time. More specifically, they are usually
back-translated into the cross-lagged regression coefficients that can be expected
across a range of different time intervals. This is achieved when plotting a
CoTiMA fit object (or several of the CoTiMA fit objects in the same plot).

plot(ctmaFitList(CoTiMAInitFit_3, CoTiMAFullFit_3),
timeUnit="Months",
timeRange=c(1, 144, 1) )

Figure 9: Plotting a Full CoTiMA (plot)

Figure 9 shows how to plot both the effects of the three separately fitted pri-
mary studies and the aggregated effect into single figures. Actually, since there
are four effects (auto effect V1toV1, auto effect V2toV2, cross effect V1toV2,
and cross effect V2toV1 ), four figures will be created. To tell the plot function
that these are multiple CoTiMA fit objects, they have to be combined using
the CoTiMA function ctmaFitList. For labeling of the x-axis the time unit is
specified by timeUnit="Months" ranging from 1 to 144 in 1-month steps (the
smaller the steps, the smoother the plot). For the effect V2toV1, the resulting
plot is shown in Figure 10.
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Figure 10: The cross-lagged effect V1toV2 across 1 to 144 months.

As can be seen, the dashed black line that represents the aggregated effect
reaches its maximum across time intervals of 6 month, where it can be expected
to be .3669 (see Figure 8), and then becomes smaller eventually approaching
zero. It is noteworthy, albeit not occurring very often and probably limited
to CoTiMAs with very few primary studies, that the aggregated effect does
not always have to be somewhere in between the smallest and largest effects
observed among the primary studies. CoTiMA does not aggregate by taking a
(weighted) average of single effects. Rather, it optimizes estimates of all effects
simultaneously by minimizing the loglikelihood value of the fit function, and
the single set of the two auto effects and the two cross effects best explains the
observed correlations across the three primary studies.

CoTiMA could be used for much more than demonstrated up to this point.
Capabilities include traditional fixed and random effects analyses, analyses of
publication biases, assessing heterogeneity, comparing effect sizes within models,
moderator analysis, and analysis of statistical power. However, for CoTiMA like
for any kind of meta-analysis, the most time consuming work is data collection
and data management. Therefore, the two next sections deal with this topic.
We make several recommendations of how to proceed and we introduce further
functions and capabilities of CoTiMA which could make the life of a meta-
analyst more convenient. Subsequent sections then address additional types of
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analyses that could be conducted after a full CoTiMA.

3 EPIC-BiG-Power: A Recommended CoTiMA
Workflow

Our recommended CoTiMA workflow can be summarized with the acronym
EPIC-BiG-Power, which stands for Extract, Prepare, InitFit, CoTiMAs, Bias
& Generalizability, and statistical Power.

1. EPIC: Extract correlations from the literature and save them to disk.
There are no particular ctmaXxxx function available supporting this step.
It is hard work! We make some suggestions in Section 4.

2. EPIC: In a Preparatory step, modify correlations, add further study in-
formation, and compile lists of primary studies to be used for subsequent
analysis using ctmaPrep (and ctmaEmpCov if useful). This is elaborated
in Section 5.

3. EPIC: Perform a series of Initial fits, in which each primary study out of
the lists of primary studies is used to fit a ctsem model using ctmaInit.
This is demonstrated in Section 6.

4. EPIC: The fit object delivered in Step 3 is typically used to perform a
CoTiMA using ctmaFit. This is the core of CoTiMA!

(a) We show how to perform a full CoTiMA in Subsection 7.1, in which
an entire drift matrix is aggregated.

(b) In Subsection 7.2 a partial CoTiMA is demonstrated, in which subsets
of drift coefficients are aggregated.

(c) To address the question whether two (or more) drift effects (e.g., the
2 cross effects) estimated in Step 4(b) are identical, or if one effect
is significantly larger than the other one, use the CoTiMA fit object
delivered in Step 4(b) and ctmaEqual to test this, and see Subsection
7.3 for details.

(d) To address the question whether one (or more) drift effects are mod-
erated by certain characteristics of the primary studies (e.g., the year
when they were published), use the CoTiMA fit object delivered in
Step 3 and ctmaFit to test this. See Subsection 7.4.

5. BiG: Analysis of publication Bias including possible corrections and can
also be performed. Further, various measure of heterogeneity, which allow
answering the question if effects could be Generalized, are reported. This
also involves z-curve analysis. Classical fixed and random effects of each
single drift effect (not as a set) are estimated, too. Use the CoTiMA fit
object delivered in Step 3 and ctmaBiG to test this. This is demonstrated
in Section 8.
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6. Power: Calculation of the statistical (post hoc) Power of each single
primary study (using the CoTiMA results as true effect estimates) as well
as required sample sizes for future studies using a range of different time
intervals could be performed using by the CoTiMA fit object delivered in
Step 3 and ctmaPower. This is demonstrated in Section 9.

7. Results of the different analyses could be plotted with plot(CoTiMaFit-
Objects). Funnel and forest plots will be created if CoTiMaFitObjects is
a CoTiMA fit object delivered by ctmaBiG. Plots of required sample sizes
are delivered if CoTiMaFitObjects is a CoTiMA fit object delivered by
ctmaPower. Discrete time cross-lagged and autoregressive effect size plots
will be created if CoTiMaFitObjects is a CoTiMA fit object delivered
by ctmaInit or ctmaFit. This is demonstrated throughout Section 6 –
Section 9.

4 Extraction of Correlations from the Literature
In the previous example, we used only the mandatory objects (delta_ti ) and
objects that are probably required in most instances (sampleSizei , empcovi ).
We show later how data management can be improved by using further objects.
This section starts, however, with some recommendations and helpful functions
that can make data entry easier and offer new possibilities.

One of the most laborious steps is entering the correlation matrices of pri-
mary studies. Although it would be less laborious to enter only lower triangular
correlation matrices, the requirement to have full correlation matrices serves to
double check if correlations are entered correctly. Small typographical errors
could have large consequences such as time-consuming and poor convergence
in fitting the model to the data. Although it is preferred to analyze correla-
tion matrices in meta-analyses rather than covariances, the option to analyze
covariances is available; CoTiMA automatically switches to the analysis of co-
variances if vectors of variances (empVari ) are provided. This is, however, not
recommended because different variances imply that effect sizes between studies
are on different scales, making aggregated effects impossible to interpret. Sim-
ilarly, empirical mean values for all variables (empMeansi ) could be provided,
but we do address these possibilities here.

Figure 11 shows an example of how to enter and save correlation matrices.
We recommend entering them as they are published and not change any signs
or skip variables. This could be easily done later. Although it is no formal
requirement, we also recommend labeling the variables (i.e., the row names
and column names of the matrices) as they are labelled by the authors of the
primary studies. The correlation matrices including the labels are then saved.
For demonstrational purposes, we change the original matrix by deleting one
variable from the matrix shown in Figure 11. In the original study (Childs &
Stoeber, 2012, Study 1), the variable ‘role stress_2’ was available, but sometimes
researchers do not measure all variable at all time points. When conducting a
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empcov128 <- matrix(c(
1.00, 0.48, 0.50, 0.50, 0.43, 0.40, 0.39, -0.51, -0.45,
0.48, 1.00, 0.17, 0.23, 0.22, 0.00, 0.01, -0.10, -0.08,
0.50, 0.17, 1.00, 0.63, 0.42, 0.45, 0.44, -0.52, -0.41,

0.50, 0.23, 0.63, 1.00, 0.65, 0.59, 0.50, -0.50, -0.37,
0.43, 0.22, 0.42, 0.65, 1.00, 0.49, 0.64, -0.41, -0.41,
0.40, 0.00, 0.45, 0.59, 0.49, 1.00, 0.75, -0.54, -0.46,
0.39, 0.01, 0.44, 0.50, 0.64, 0.75, 1.00, -0.48, -0.57,

-0.51, -0.10, -0.52, -0.50, -0.41, -0.54, -0.48, 1.00, 0.70,
-0.45, -0.08, -0.41, -0.37, -0.41, -0.46, -0.57, 0.70, 1.00), 9, 9)

pairwiseN128 <- matrix(c(
100, 99, 88, 77, 66, 55, 44, 33, 22,
99, 99, 99, 88, 77, 66, 55, 44, 33,
88, 99, 88, 99, 88, 77, 66, 55, 44,

77, 88, 99, 77, 99, 88, 77, 66, 55,
66, 77, 88, 99, 66, 99, 88, 77, 66,
55, 66, 77, 88, 99, 55, 99, 88, 77,
44, 55, 66, 77, 88, 99, 44, 99, 88,
33, 44, 55, 66, 77, 88, 99, 33, 99,
22, 33, 44, 55, 66, 77, 88, 99, 22), 9, 9)

variableNames128 <- c("SPP_1", "SOP_1",
"role stress_1",
"exhaustion_1", "exhaustion_2",
"cynicism_1", "cynicism_2", "efficacy_1", "efficacy_2")

dimnames(empcov128) <- list(variableNames128, variableNames128)
saveRDS(empcov128, file=paste0(activeDirectory, "empcov128.rds"))
saveRDS(pairwiseN128, file=paste0(activeDirectory, "pairwiseN128.rds"))

Figure 11: Entering correlation matrices

CoTiMA one has to deal with missing data (correlations) then. To demonstrate
how this could be achieved, we deleted ‘role stress_2’ from the original matrix,
which we visualize in Figure 11 by blanks after the column and row containing
the correlations for ‘role stress_1’.

A further possible challenge for CoTiMA are correlation matrices reported
in primary studies that are based on pairwise deletion of missing values. One
possible problem is that such matrices might not be suited at all for analysis if
they or not positive definite. This cannot happen with listwise deletion. A not
positive definite matrix is given, for example, if the correlation between A and
B is r = .90, between A and C r = .80, and between B and C r = .10 - given the
two large correlations, such a small correlation is impossible if all correlations are
based on identical samples. If a matrix is not positive definite, we recommend
contacting the authors of the primary study and ask for a correlation matrix
based on listwise deletion, or for raw data. Another option is to drop one or
more variables from the correlation matrix. One could check if the matrix is
positive definite after dropping variables; the code eigen(empcov128)$values
should deliver only positive eigenvalues then.

A second challenge resulting from pairwise deletion of missing values in pri-
mary studies is the sample size to be used for CoTiMA. Sometimes, authors re-

11



port the range of pairwise N (e.g., pairwise N = 22 to 100) in a table note. We
recommend using the smallest value then (e.g., sampleSize128 = 22). Some-
times, however, authors report pairwise N for each correlation. Thus, we also
have a matrix of pairwise N, which we illustrate in Figure 11. Recall that we
also have to deal with the entirely missing variable ‘role_stress2’, which we
again visualize by inserted blanks and an empty row in the matrix of pairwise
N. Using a matrix of pairwise N rather than just the smallest of all N increases
the statistical power of a CoTiMA. We recommend saving the matrix to disk.
In case there is a matrix of pairwise N this could also be saved.

5 Preparatory Step (ctmaEmpCov, ctmaCorRel,
ctmaPrep)

CoTiMA uses correlation matrices to generate ‘pseudo raw data’ using the
MASS R package (Veneables & Ripley, 2002). Pseudo raw data exactly (!)
reproduce the correlation matrices and offers a couple of interesting options. In
the present section we show how data can be processed in terms of recoding
variables, combining two or more variables into composite scores, and dealing
with missing correlations. (The possibility to combine two or more correlations
into a single correlation will be added soon.)

We turn now to processing the correlations shown in Figure 11. Our aim
is to analyze the reciprocal effects between job demands and burnout. In par-
ticular, we (1) want to correct the correlations for unreliability (aka correction
for attenuation, disattenuation). Further, we (2) want to drop the variables
‘SPP_1’ and ‘SOP_1’ because these variables do not exist in other primary
studies and because they are not of particular interest. We also (3) want to re-
code ‘efficacy_1’ and ‘efficacy_2’ so that they represent lack of efficacy rather
than efficacy. Lack of efficacy, cynicism, and exhaustion are the three burnout
symptoms, and we (4) want to combine them into a single variable6. Whereas a
measure of demands is available for the first measurement occasion (‘role stress
1’), such a measure is missing at the second measurement occasion. Thus, we
(5) also have to deal with missing correlations.

First, to achieve our aims, we start with reading the previously saved cor-
relation matrix and the matrix of pairwise N (see Figure 12) and assign them
to R objects empcov128 and pairwiseN128. With colnames(empcov128) (not
shown in Figure 12) we could recall the variable names, which are ’SPP_1’,
’SOP_1’, ’role stress_1’, ’exhaustion_1’, ’exhaustion_2’, ’cynicism_1’, ’cyni-
cism_2’, ’efficacy_1’, and ’efficacy_2’. First, we do the corrections for unre-
liability. This has to be done first because, for example, reliabilities would be
no longer available after two or more variables are combined. To correct for

6CoTiMA could also be used with measurement models, for example, with lack of efficacy,
cynicism, and exhaustion as manifest indicators of a latent factor. However, in meta-analysis
the most common case is that burnout would be measured using different (numbers of) vari-
ables. Therefore, combining the available variables for each primary study and then using a
single manifest indicator in subsequent CoTiMA is frequently the only viable way.
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empcov128 <- readRDS(file=paste0(activeDirectory, "empcov128.rds"))
pairwiseN128 <- readRDS(file=paste0(activeDirectory, "pairwiseN128.rds"))
delta_t128 <- c(6)
alphas128 <- c(.87, .88, .80, .94, .91, .88, .95, .81, .88)
empcov128 <- ctmaCorRel(empcov128, alphas128)
targetVariables128 <- c("role stress_1",

"exhaustion_1", "cynicism_1", "efficacy_1",
"exhaustion_2", "cynicism_2", "efficacy_2")

recodeVariables128 <- c("efficacy_1", "efficacy_2")
sampleSize128 <- NULL
combineVariables128 <- list("role stress_1",

c("exhaustion_1", "cynicism_1", "efficacy_1"),
c("exhaustion_2", "cynicism_2", "efficacy_2"))

combineVariablesNames128 <- c("Demands1", "Burnout1", "Burnout2")
missingVariables128 <- c(3)
results128 <- ctmaEmpCov(targetVariables=targetVariables128,

recodeVariables=recodeVariables128,
combineVariables=combineVariables128,
combineVariablesNames=combineVariablesNames128,
missingVariables=missingVariables128,
nlatents=2,
pairwiseN=pairwiseN128,
Tpoints=2,
empcov=empcov128)

empcov128 <- results128$r
pairwiseN128 <- results128$pairwiseNNew

Figure 12: Processing correlation matrices (ctmaCorRel, ctmaEmpCov)

unreliability, a vector of reliabilities (alpha128) has to be provided, and then
the ctmaCorRel is used to replace empcov128 by its disattenuated counterpart7.

Second, we reduce the number of variables. All variables except the two
we want to drop are assigned to targetVariables128. Note that a formal
requirement of CoTiMA is that the variables are ordered in Time (Time 0
variables, Time 1 variables, etc.). This is also achieved by ordering the variables
accordingly when creating targetVariables128.

Third, the two variables we want to recode are assigned to the object recode-
Variables128. If an empcovi does not include variable names (no dimnames),
one could use the variables’ positions (i.e., recodeVariables128 <- c(4, 7)).
Note that if numbers are used, they should correspond to the positions in the
targetVariablesi object rather than the ros/columns in the empcovi object
(i.e., recoding is done after targetVariablesi were selected from empcovi ).

Although it is not explicitly necessary to assign NULL to sampleSize128,
7Correlations are disattenuated using the well-known formula developed by Spearman

(1904). This formula is based on several assumption. One of these assumptions is that
the assumption underlying Cronbach’s alpha (or any other estimate of reliability), which is
usually used to measure reliability, are correct. While violations of the assumptions do usually
not cause visible consequences when dealing with a single cross-sectional correlation coeffi-
cient, in the case of correlation matrices of longitudinal studies it might cause problems. One
problem is that disattenuated test-retest correlations could become larger than 1.0, which is
automatically corrected by ctmaCorRel (i.e., they are set to 1.0). Another problem is that the
disattenuated matrices might not positive definite and could not be analyzed then.
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we do it for completeness here. This prevents that a single sample size for Study
128 is reported in some of the generated outputs, which might be misleading.

Fourth, we use a list (!) of variable names or vectors of variable names to
specify the variables that should or should not be combined. This list is stored
in the object combineVariables128. We keep the variable ‘role stress_1’ as
it is, whereas for the first and second measurement occasion the three burnout
variables are combined into a single scale, respectively. The three final variables
are then labeled as specified in combineVariablesNames128.

Fifth, since there is no variable for demands at the second time point, we
declare it as missing. This is done by stating which variable is missing in the
imagined set of ‘Demands1, Burnout1, Demands2, Burnout2’, which is the 3rd
element. Thus, missingVariables128 <- 3.

## [1] empcov128
## [,1] [,2] [,3] [,4]
## [1,] 1.0000000 0.7361878 NA 0.5809288
## [2,] 0.7361878 1.0000000 NA 0.8118634
## [3,] NA NA NA NA
## [4,] 0.5809288 0.8118634 NA 1.0000000
## [1] pairwiseN128
## [,1] [,2] [,3] [,4]
## [1,] 88 77 0 44
## [2,] 77 55 0 44
## [3,] 0 0 0 0
## [4,] 44 44 0 22

Figure 13: Results of applying ctmaEmpCov to the specifications of Study 128

The CoTiMA package comes with the function ctmaEmpCov which performs
the desired operations (recoding, combining etc.) and yields the final correla-
tion matrix that we want to use for our subsequent CoTiMA. Since we have a
matrix of pairwise N this will be processed by ctmaEmpCov, too. Among others,
ctmaEmpCov returns a new correlation matrix which is then used to replace the
empcov128 from which we started. Further, ctmaEmpCov returns a new matrix
of pairwise N, which is then used to replace the pairwiseN128. Figure 13 shows
the new correlation matrix and matrix of pairwise N.

rawData128 <- list(fileName=paste0(activeDirectory, "rawdata128.txt"),
studyNumbers=128, missingValues=c(-99),
standardize=TRUE, header=FALSE, dec=".", sep=" ")

delta_t128 <- c(NA)

Figure 14: Using raw data

Instead of correlation matrices, raw data can be used as well, and the ar-
guments required to read raw data from disc have to be stored in a rawDatai
object. In R, a list is a list (sic!) that has elements, which have their own
labels (like in a shopping list, in which you summarize the planned purchases
in subitems like "vegetables", "cheese" etc.). Unlike a vector, the elements of a
list could be of different types, for example, characters, numbers, symbols, ma-
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trices etc. The list object created in Figure 14 has seven elements: fileName,
studyNumbers, missingValues, standardize, header, dec, and sep.

V1_T0 V2_T0 V1_T1 V2_T1 dT1
0.835 2.328 -0.778 2.969 11
1.555 2.634 1.977 1.807 12
3.209 1.849 2.291 2.795 12
0.416 2.351 0.127 1.705 13

-99.000 -99.000 0.476 -99.000 13
-99.000 -99.000 0.854 -99.000 11
-99.000 -99.000 -99.000 2.987 12
-99.000 -99.000 -99.000 2.087 12
-99.000 -99.000 -99.000 0.927 13

Figure 15: Raw data file structure

The raw data have to be included in an ordinary text file, and the name
of the file should be stored in the list element fileName. Possibly missing
values should be specified, and only a single value is possible (-99 is assumed by
default) and stored in the list element missingValues. Whether or not the raw
data should be standardized, which implies the analysis of correlations, or not,
which implies the analysis of covariance, could be specified by setting the list
element standardize to either TRUE (default and recommended) or to FALSE.
Whether or not the raw data files include a header with variable names (as for
the example data below) could be specified by setting the element header to
either TRUE (default) or to FALSE. Finally, a decimal delimiter (default = ‘.’) and
the characters separating the values (default = ‘ ‘) could be defined using the
list elements dec and sep, respectively. Note that in meta-analysis, moderators
are usually study characteristics (e.g., the average age of a sample) rather than
characteristics of individual study participants. Therefore, moderator values are
not taken from a raw data file, but they are defined directly for a primary study
that does provide raw data by assigning values to the moderator object; this is
explained later.

Raw data of a primary study has to be provided as a text (ascii) file. Data
has to be in wide format (i.e., one row per individual). Assuming there are t
measurement occasions, the order of the variables should be V1_T0, V2_T0,
. . . , V1_Tt, V2_Tt, dT1, dT2, . . . dT(t-1), where dTt are the variables repre-
senting the time intervals (deltas) between measurements (see Figure 15; here
with header). Note that if t measurement occasions exist, there are t-1 time
intervals. Compared to correlation matrices as input, raw data allow the time
intervals to vary between the individuals within a study (average time intervals
are automatically reported in CoTiMA fit objects). However, for studies that
supply raw data, it is mandatory to specify the delta_ti object! It has to have
as many NA as the largest number of possible time intervals in the respective
study is, for example, in the case of not more than three intervals, delta_ti
<- c(NA, NA). In the example in Figure 15 there are only two time points and,
thus, one interval dT1. Thus, delta_ti is indeed the only mandatory object
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ageM2 <- 39.3
ageSD2 <- 8.7
malePercent2 <- .60
occupation2 <- c("Bank employees")
country2 <- c("Netherlands")
demands2 <- c("Workload")
burnout2 <- c("Emotional Exhaustion")
targetVariables2 <- c("Demands1", "Burnout1", "Demands1", "Burnout2")
source2 <- c("Houkes, I,", "Janssen, P, P, M,", "de Jonge, J", "& Bakker, A, B",

"Study1", "2003")
moderator2 <- c(1, 0.72)

ageM3 <- 47.4
ageSD3 <- 5.8
malePercent3 <- .70
occupation3 <- c("Teachers for adults")
country3 <- c("Netherlands")
demands3 <- c("Workload")
burnout3 <- c("Emotional exhaustion")
targetVariables3 <- c("Demands1", "Burnout1", "Demands1", "Burnout2")
source3 <- c("Houkes, I,", "Janssen, P, P, M,", "de Jonge, J", "& Bakker, A, B",

"Study2", "2003")
moderator3 <- c(1, 0.72)

ageM313 <- 30
ageSD313 <- 6
malePercent313 <- 0.30
occupation313 <- c("Wmployment agency employees")
country313 <- c("Netherlands")
demands313 <- c("Work pressure")
burnout313 <- c("Exhaustion")
targetVariables313 <- c("Demands1", "Burnout1", "Demands1", "Burnout2",

"Demands3", "Burnout3")
source313 <- c("Demerouti", "Bakker", "& Bulters", "2004")
moderator313 <- c(2, 0.72)

ageM128 <- 41
ageSD128 <- 11.4
malePercent128 <- 0.203
occupation128 <- c("Managerial employees in NHS trusts")
country128 <- c("UK")
demands128 <- c("Role Stress")
burnout128 <- c("Exhaustion", "Cynicism")
source128 <- c("Childs, J. H.", "& Stoeber, J.", "Study1", "2012")
moderator128 <- c(2, 0.66)

Figure 16: Additional information for study data entered before

because rawDatai could substitute empcovi and pairwiseNi could substitute
sampleSizei .

So far, we introduced the objects delta_ti , sampleSizei , empcovi , tar-
getVariablesi , alphasi , pairwiseNi , and rawDatai ). Further pre-defined
object names are:

• moderatori . A vector of numerical values either representing categorical
or continuous variables, e.g., moderator6 <- c(1, 2, 2, 0.76, 2.56,
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2001)

• startValuesi . A vector of start values, which was used in previous Co-
TiMA versions. Currently the use of start values is disabled, but this
might change in the future.

• empMeansi . Mean values of variables (default = 0). It is not recommended
to change the default, but it is possible, e.g., empMeans7 <- c(1, -2.5,
1.1, -2.4)

• empVarsi . Variances of variables; (default = 1). It is not recommended
to change the default, but it is possible, e.g., empVars6 <- c(1, 2, 1.1,
1.9)

• studyNumberi . A special number used for labeling in the outputs of
subsequently fitted CoTiMA models, e.g., studyNumber6 <- 66

• sourcei . Useful to label the table displaying the estimated parameters
for each primary study, rather than using the numbers used for the pri-
mary study objects (e.g., 128 from empcov128), e.g., source6 <- c("De
Jonge", "Dormann", "Janssen", "Dollard", "Landeweerd", "& Nij-
huis", "2001")

• ageMi . A value indicating the mean age of participants in a primary
study, e.g., ageM6 <- 31.78

• malePercenti . A value indicating the percentage of male participants in
a primary study, e.g., malePercent6 <- 0.11

• occupationi . A vector of character strings representing the occupations
of participants in a primary study. Of course, this has not to be taken
literally. For example it could be also used to represent the program in
which student participants are enrolled and similar classifications, e.g.,
occupation6 <- c("Health care workers")

• countryi . A single character string representing the country in which a
primary study was conducted, e.g., country6 <- c("Netherlands")

In addition to these pre-defined object names, user-defined object names
could be added (e.g., demandsi and burnouti , to add information about the
type of measurement scale used in primary studies). The difference between
pre-defined and user-defined objects is twofold. First, pre-defined objects are
included in the Excel workbook that summarizes primary study information
(see. Figure 20). Second, user-defined objects have to be declared in ctmaPrep
using the argument addElements (see Figure 18).

To proceed further with the example, in a first step documented in Figure 16
we add information to those four primary studies data already entered before.
In a second step, we add two further primary study information as shown in
Figure 17.
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empcov18 <- matrix(c(1.00, 0.44, 0.62, 0.34,
0.44, 1.00, 0.41, 0.62,
0.62, 0.41, 1.00, 0.55,
0.34, 0.62, 0.55, 1.00), 4, 4)

variableNames18 <- c("Demands_1", "Burnout_1", "Demands_2", "Burnout_2")
dimnames(empcov18) <- list(variableNames18, variableNames18)
delta_t18 <- 12
sampleSize18 <- 174
ageM18 <- 41.33
ageSD18 <- 9.70
malePercent18 <-0.03
occupation18 <- c("Service employees")
country18 <- c("Germany")
demands18 <- c("Workload")
burnout18 <- c("Emotional exhaustion", "Depersonalization")
source18 <- c("Diestel", "& Schmidt", "Study 1", "2012")
moderator18 <- c(1, 0.7)

empcov32 <- matrix(c(1.00, 0.45, 0.70, 0.40,
0.45, 1.00, 0.36, 0.66,
0.70, 0.36, 1.00, 0.43,
0.40, 0.66, 0.43, 1.00), 4, 4)

variableNames32 <- c("Demands_1", "Burnout_1", "Demands_2", "Burnout_2")
dimnames(empcov32) <- list(variableNames32, variableNames32)
delta_t32 <- 8
sampleSize32 <- 433
ageM32 <- 41.5
ageSD32 <- 10.2
malePercent32 <- 0.199
occupation32 <- c("Teachers")
country32 <- c("Canada")
demands32 <- c("classroom overload")
burnout32 <- c("Emotional exhaustion", "Depersonalization")
source32 <- c("Fernet", "Guay", "Senecal", "& Austin", "2012")
moderator32 <- c(1, NA)

Figure 17: Information for two further primary studies

The six studies are now compiled into a list as shown in Figure 18. We add
the two user-defined object names demandsi and burnouti . We also provide
a vector with the labels of the two moderators, and we provide a list of vectors
to label the moderator values.

To get a convenient overview of the information stored in this list, one could
use the openxlsx R package (see Figure 19). An example of what is displayed
when opening the excel workbook with its several sheets with openXL is shown
in Figure 20. The workbook could also be saved to disk using the saveWorkbook
function of openxlsx.
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CoTiMAstudyList_6 <- ctmaPrep(selectedStudies=c(2, 3, 313, 128, 18, 32),
addElements = c("demands", "burnout"),
moderatorLabels=c("Burnout Measure", "Control at Work"),
moderatorValues=list(c("1 = Emotional Exhaustion", "2 = Exhaustion"),

"continuous"))

Figure 18: Compiling a list of primary studies with extended information
(ctmaPrep)

openXL(CoTiMAstudyList_6$excelSheets)
saveWorkbook(CoTiMAstudyList_6$excelSheets, overwrite=TRUE,

file=paste0(activeDirectory, "myExcelSheet.xlsx") )

Figure 19: Open an Excel sheet with summary information included in a com-
piled list of primary studies (requires package openxlsx)

Figure 20: Excel sheet with summary information included in a compiled list of
primary studies
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6 Initial Fitting (ctmaInit)
Now the first two steps (Extract & Prepare) in the recommended EPIC-BiG-
Power workflow are done and we can move forward to the ‘Init’ step, for which
the previously compiled CoTiMAstudyList_6 is required. Initial fitting is done
with the code in Figure 21 (analogous to Figure 4), and the result is then
displayed on the console (see Figure 22).

CoTiMAInitFit_6 <- ctmaInit(primaryStudies=CoTiMAstudyList_6,
n.latent = 2,
activeDirectory = activeDirectory,
coresToUse = 1)

Figure 21: Fitting a ctsem model for each primary study (ctmaInit)

## V1toV1 SE V2toV1
## Study No 2 "Houkes et al., Study1, 2003" "-0.0486" "0.012" "0.0071"
## Study No 3 "Houkes et al., Study2, 2003" "-0.0323" "0.0094" "0.0054"
## Study No 313 "Demerouti et al., 2004" "-0.4131" "0.0453" "0.1468"
## Study No 128 "Childs, & Stoeber, Study1, 2012" "-10.9606" "0.6433" "0.0625"
## Study No 18 "Diestel, & Schmidt, Study 1, 2012" "-0.0541" "0.0102" "0.026"
## Study No 32 "Fernet et al., 2012" "-0.051" "0.0071" "0.0111"
## SE V1toV2 SE V2toV2 SE
## Study No 2 "0.009" "-0.0189" "0.0111" "-0.027" "0.0087"
## Study No 3 "0.0106" "0.0111" "0.0097" "-0.0367" "0.0115"
## Study No 313 "0.0373" "0.0861" "0.0346" "-0.2777" "0.0315"
## Study No 128 "2.4258" "-0.4631" "0.0249" "-0.6992" "2.1141"
## Study No 18 "0.0105" "0.0114" "0.0099" "-0.0481" "0.0112"
## Study No 32 "0.0075" "0.0258" "0.008" "-0.0663" "0.0096"

Figure 22: Some results for the primary studies (ctmaInit)

For Study 128, which we used to demonstrate how to deal with missing
variables, some unusual estimates emerged that are not unexpected. In Study
128, the variable V1_T1 was missing (demands T1, i.e., ‘role stress_2’). Ob-
viously, the absolute values of V1toV1 and its SE and the SE of V2toV1 are
much larger than their counterparts of the other studies. We will use this case
to review some of the general principles of continuous time structural equation
modeling (CTSEM).

First, in CTSEM any pair of subsequent measurement occasions is regarded
as equivalent except the length of the time interval, which may vary. Therefore,
continuous time coefficients do not describe, for example, the relations between
demands at Time 0 and burnout at Time 1. Rather, earlier demands affect
later burnout. Thus, in CoTiMA, the effect V1toV1 means the auto effect of
earlier V1 to later V1. Similarly, the effect V1toV2 means the cross effect of
earlier V1 to later V2. In continuous time, the terms auto effect and cross
effects are used, whereas in discrete time, the terms auto-regressive effect and
cross-lagged effects are used. In a similar vein, the terms diffusion (variance) in
continuous time substitutes the term error (variance) in discrete time, and the
term continuous time intercepts substitutes the term intercept (for more details
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see Voelkle et al., 2012; Driver et al., 2017).
Between these pairs of continuous time and discrete time coefficients, well-

defined mathematical relations exist. The only reason why continuous time
coefficients are used is that the math is known to describe how coefficients
change across time. To translate auto and cross effects into auto-regressive
and cross-lagged effects, put the former into a matrix, multiply the matrix by
length of time interval, and then apply the matrix (!) exponential function.
This matrix contains the auto effect in the diagonal and the cross effects off the
diagonal.

Figure 23 shows how the continuous time drift effects obtained for Study 313
(see Figure 22) relate to 1-month auto-regressive and cross-lagged effects in dis-
crete time. Demands are slightly less stable (V1toV1 ) than Burnout (V2toV2 ).
The negative auto effects in continuous time thus translate into positive auto-
regressive effects in discrete time. Thus, in continuous time, the more negative
an auto effect is, the less stable a variable is. Further, the effect of earlier de-
mands on later burnout is smaller (V1toV2 ) than the effect of earlier burnout on
later stressors (V2toV1 ). Note that multiplying the matrix with, for example, 2
(i.e., expm(A313 * 2)) yields the effects across a 2-month lag. This is the way
how discrete time effect sizes are computed and plotted (see Figure 10).

## [1] library(expm)
## [1] A313 <- matrix(c(-0.4131, 0.1468, 0.0861, -0.2777), 2, 2, byrow=TRUE)
## [1] A313
## [,1] [,2]
## [1,] -0.4131 0.1468
## [2,] 0.0861 -0.2777
## [1] expm(A313 * 1)
## [,1] [,2]
## [1,] 0.6659772 0.1042237
## [2,] 0.0611285 0.7621072

Figure 23: Relation between continuous time drift coefficients of Study 313 and
its discrete time effects

The result of applying the same transformation to the suspicious drift effects
of Study 128 is shown in Figure 24. The critical auto effect V1toV1 corresponds
to an almost zero auto-regressive effect across 1 month. A person’s level of
demands at work does virtually not predict the person’s demands one month
later, which one would usually regard as not very plausible. In fact, this out-of-
range estimate is a consequence that in Study 128 later demands was a missing
variable. Thus, we cannot expect meaningful results from fitting a ctsem model
to Study 128. However, we could use the empirical information Study 128
provides in a CoTiMA, in which we assume drift effects to be invariant across
primary studies8.

8Assuming invariant drift effect means that we aggregate V1toV1, V1toV2, V2toV1, and
V2toV2 across primary studies. Technically speaking, this is done by estimating the set of four
values that lead to the smallest difference between the model-implied and empirical covariance
matrices. Study 128 could not directly provide information to estimate V1toV1 and V2toV1,
but it does provide information useful for estimating V1toV2 and V2toV2 (and the variances
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## [1] library(expm)
## [1] A128 <- matrix(c(-10.9606, 0.0625, -0.4631, -0.6992), 2, 2, byrow=TRUE)
## [1] A128
## [,1] [,2]
## [1,] -10.9606 0.0625
## [2,] -0.4631 -0.6992
## [1] expm(A128 * 1)
## [,1] [,2]
## [1,] -0.0001189109 0.003020042
## [2,] -0.0223773037 0.495718843

Figure 24: Relation between continuous time drift coefficients of Study 128 and
its discrete time effects

Again, model results could also be opened as excel workbook with open-
XL(CoTiMAInitFit_6$excelSheets). For example, effects, their standard er-
rors and lower limit (LL) and upper limit (UL) credible intervals are shown in
Figure 24. From the workbook, coefficients could be easily copied into a word
processing app to build proper results tables.

Figure 25: Excel sheet with summary of model results

Doing the initial fitting of ctsem models to all primary studies allows setting
several options (arguments) such as, for example, constraining some drift effects
to be 0.0, or using different estimators such as Bayesian instead of maximum
likelihood estimation. The arguments to select estimators are introduced as fol-
lows, and the entire list of possible arguments of the different CoTiMA functions
are listed in the Appendix. Note that the optimize argument should be used
and not be confused with optimise, which is used by ctsem.

One particular option is to use Bayesian estimation. Bayesian estimates
are drawn from posterior probability distributions, for which different samplers
could be used. The most robust sampler is the Hamiltonian Monte Carlo (HMC)
sampler (Stan Developer Team, 2020a). However, it is the slowest one. The
Stan Math library (Carpenter, Hoffman, Brubaker, Lee, Li & Betancourt, 2015),
which is used by ctsem and CoTiMA for estimation, offers a No U-Turn Sampler
(NUTS), which is a variant of the HMC sampler and usually works well and is
faster. However, both samplers are much (!) slower than maximum likelihood
estimation, which is the default estimator, or maximum a posteriori estimation.
In fact, most desktop computers in 2021 probably would need a couple of weeks

of V1 and V2, their covariance, and the residual variance of V2).
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for a full CoTiMA with Bayesian estimation if 20 or more primary studies are
analyzed. Table 1 gives an overview of how the different estimators can be
requested by setting the optimize and the nopriors argument of all CoTiMA
fitting functions (ctmaInit, ctmaFit, ctmaEqual, & ctmaPower).

Table 1: Estimators available for CoTiMA

optimize

FALSE TRUE

nopriors

FALSE
Bayesian estimation via
Stan’s NUTS sampler

Maximum a posteriori
estimation

TRUE

Bayesian estimation via
HMC sampling

(nopriors will be
changed to FALSE)

maximum likelihood
estimation (default)

Note: HMC = Hamiltonian Monte Carlos Sampler; NUTS = No U-Turn Sampler

Weakly informative priors for Bayesian estimation with the NUTS sampler
and for maximum a posteriori estimation are provided by ctsem. They work
well under most circumstances, however, sometimes they might not work well
because the priors provided by ctsem have been optimized for time measured in
years. For example, one could use the argument scaleTime = 1/365.25 if time
was measured in days and previous fitting attempts did not yield meaningful
results.

Figure 26 shows how Bayesian estimates using the NUTS sampler could be
obtained. Since estimation requires long time (expect several hours), it is rec-
ommended to save the model fits for each primary study using the saveSingle-
StudyModelFit argument. If further studies are added later, re-estimating these
models could be avoided by the corresponding readSingleStudyModelFit ar-
gument. In the example in Figure 26, we used chains = 2 and coresToUse
= 2. Three chains and three cores are recommended before publishing results.
Note that on Windows machines using more than one core may not work; use
coresToUse = 1 then (which doubles the time needed to fit the models). Since
Bayesian estimation takes a long time, we want to take care that we get precise
results in our first fitting attempt; we set finishsamples = 10000 for this pur-
pose. This means parameter estimates and the credible intervals will be sampled
10000 times from the estimated parameter distribution, rather than only 1000
sample, which is the default for finishsamples.

Part of the results obtained from the code in Figure 26 printed to the console
with summary(CoTiMAInitFit_6_NUTS) is shown in Figure 269. A comparison
with the maximum likelihood effects and their standard errors in Figure 22

9In addition, several warning messages are issued. They are all related to Study 128, for
which we introduced missing data. This does not happen if doing the analysis again without
Study 128.
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CoTiMAInitFit_6_NUTS <- ctmaInit(primaryStudies=CoTiMAstudyList_6,
n.latent = 2,
activeDirectory=activeDirectory,
saveSingleStudyModelFit =

c("InitFit_6_NUTS", 2, 3, 313, 128, 18, 32),
optimize=FALSE,
nopriors=FALSE,
chains = 2,
coresToUse = 2,
finishsamples = 10000)

saveRDS(CoTiMAInitFit_6_NUTS, file=paste0(activeDirectory,
"CoTiMAInitFit_6_NUTS.rds"))

summary(CoTiMAInitFit_6_NUTS)

Figure 26: Using Bayesian estimation via Stan’s NUTS sampler (ctmaInit)

reveals no substantial differences except for Study 128, for which results are
not trustworthy anyway. We should note, further, that Bayesian estimation
is sensitive to priors, and default priors are only appropriate if the time scale
is appropriately chosen, too. This could require using an appropriately cho-
sen scaleTime argument (see Footnote 5) and setting customPar = FALSE (see
Appendix).

## V1toV1 SE V2toV1
## Study No 2 "Houkes et al., Study1, 2003" "-0.0537" "0.0117" "0.0086"
## Study No 3 "Houkes et al., Study2, 2003" "-0.0346" "0.0113" "0.0061"
## Study No 313 "Demerouti et al., 2004" "-0.4204" "0.0447" "0.1459"
## Study No 128 "Childs, & Stoeber, Study1, 2012" "-4.257" "2.4053" "-0.0052"
## Study No 18 "Diestel, & Schmidt, Study 1, 2012" "-0.0562" "0.0108" "0.0276"
## Study No 32 "Fernet et al., 2012" "-0.0517" "0.0079" "0.0119"
## SE V1toV2 SE V2toV2 SE
## Study No 2 "0.0103" "-0.0193" "0.0094" "-0.0284" "0.0086"
## Study No 3 "0.0111" "0.0119" "0.0109" "-0.0396" "0.0116"
## Study No 313 "0.0404" "0.0944" "0.034" "-0.284" "0.0308"
## Study No 128 "0.929" "0.03" "0.3631" "-0.0744" "0.0754"
## Study No 18 "0.0104" "0.014" "0.0111" "-0.0506" "0.0111"
## Study No 32 "0.0079" "0.026" "0.0084" "-0.0661" "0.0088"

Figure 27: Estimates for the primary studies using Bayesian estimation
(ctmaInit)

7 CoTiMA (ctmaFit)
Now the first three steps (Extract, Prepare, & InitFit) in the recommended
EPIC-BiG-Power workflow are done, and we can move forward to do CoTiMAs,
for which the now available CoTiMAInitFit_6 (or CoTiMAInitFit_6_NUTS) ob-
ject is required. In the first subsection, we demonstrate how a full CoTiMA
with all drift effects could be fitted. In the second subsection, we show how
a partial CoTiMA could be fitted, and we use this subsection to introduce the
possibilities to analyze (a) subsets of studies, specific (b) invariance constraints,
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and (c) hierarchical CoTiMA using clusters of studies. In the third subsection,
we show how to statistically test the equality of drift effects, that is, a CoTiMA
with equality constraints. In the fourth subsection, we show how a moderated
CoTiMA can be performed.

7.1 Full CoTiMA (ctmaFit)

CoTiMAFullFit_6 <- ctmaFit(ctmaInitFit = CoTiMAInitFit_6_NUTS,
coresToUse = coresToUse)

saveRDS(CoTiMAFullFit_6, file=paste0(activeDirectory, "CoTiMAFullFit_6.rds"))
summary(CoTiMAFullFit_6)

Figure 28: Full CoTiMA with six studies (ctmaFit)

Fitting a full CoTiMA is done with the code in Figure 28 and with summary(-
CoTiMAFullFit_6) the results are displayed10. The term ‘full CoTiMA’ is used
to refer to a model in which all possible auto effects and all possible cross
effects are simultaneously aggregated. Later, we show how some effects could
be excluded from the model (i.e., fixed to 0.0), and how some effects could be
exempted from being invariant across primary studies. It is noteworthy that
the estimator used for initial fitting, which was NUTS, does not affect which
estimator is used in a CoTiMA; it is maximum likelihood in the present example,
which is the default estimator. Other estimators would have to be specified as
shown in Table 1.

The results in Figure 29 show the names of all parameters of the full CoTiMA
model, their respective row and column numbers in the matrices in which they
are used, their estimated mean population values, their standard errors (labelled
sd), their 2.5% lower credible interval, mean, and 97.5% upper credible interval,
and the T-values.

The four rows starting with DRIFT show the estimates for the continuous
time drift coefficients, and their discrete time counterparts, that is, the autore-
gressive and cross-lagged effects, across one month are again shown closer to the
bottom (dtDRIFT). As explained earlier, only the four rows containing the drift
coefficients are usually important for reporting CoTiMA results. Nevertheless,
we briefly explain what the other parameters stand for. For a more detailed
description see Driver, Oud, and Voelkle (2017) and exact mathematical defini-
tions can be found in Driver and Voelkle (2018).

T0MEANS at the top of Figure 29 represent the initial (T0) means of the latent
variables. Closer to the bottom in Figure 29, T0cov shows correlation of the
latent factors at T0, which is identical to their covariance because we deal with
standardized variables here.

LAMBDA is a matrix with the factor loadings of the manifest variables on the
latent factors. In the present example, this is a diagonal matrix in which the

10Fitting will issue a warning that an ‘approximate’ Hessian was used and standard errors
are not trustworthy. This is caused by the missing variables in Study 128. Still, the credible
intervals are not based on standard errors.
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## row col Mean sd 2.5% 50% 97.5% Tvalues
## T0MEANS_1_1 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
## T0MEANS_2_1 2 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
## LAMBDA_1_1 1 1 1.0000 0.0000 1.0000 1.0000 1.0000 Inf
## LAMBDA_1_2 1 2 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
## LAMBDA_2_1 2 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
## LAMBDA_2_2 2 2 1.0000 0.0000 1.0000 1.0000 1.0000 Inf
## DRIFT V1toV1 (invariant) 1 1 -0.0563 0.0055 -0.0679 -0.0556 -0.0468 -10.1584
## DRIFT V2toV1 (invariant) 1 2 0.0165 0.0042 0.0072 0.0168 0.0255 3.8885
## DRIFT V1toV2 (invariant) 2 1 0.0129 0.0044 0.0052 0.0128 0.0226 2.9270
## DRIFT V2toV2 (invariant) 2 2 -0.0555 0.0051 -0.0674 -0.0551 -0.0457 -10.8589
## MANIFESTMEANS_1_1 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
## MANIFESTMEANS_2_1 2 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
## CINT_1_1 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
## CINT_2_1 2 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
## asymCINT_1_1 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
## asymCINT_2_1 2 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
## asymDIFFUSIONcov_1_1 1 1 0.9566 0.0949 0.7809 0.9498 1.1208 10.0789
## asymDIFFUSIONcov_1_2 1 2 0.3851 0.0714 0.2705 0.3802 0.5210 5.3909
## asymDIFFUSIONcov_2_1 2 1 0.3851 0.0714 0.2705 0.3802 0.5210 5.3909
## asymDIFFUSIONcov_2_2 2 2 1.0314 0.0951 0.8656 1.0263 1.1997 10.8420
## DIFFUSIONcov_1_1 1 1 0.0941 0.0063 0.0824 0.0937 0.1066 14.8899
## DIFFUSIONcov_1_2 1 2 0.0133 0.0048 0.0045 0.0137 0.0213 2.7736
## DIFFUSIONcov_2_1 2 1 0.0133 0.0048 0.0045 0.0137 0.0213 2.7736
## DIFFUSIONcov_2_2 2 2 0.1037 0.0076 0.0907 0.1027 0.1218 13.6653
## MANIFESTcov_1_1 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
## MANIFESTcov_1_2 1 2 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
## MANIFESTcov_2_1 2 1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
## MANIFESTcov_2_2 2 2 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
## T0cov_1_1 1 1 1.0033 0.0488 0.9189 1.0046 1.0822 20.5573
## T0cov_1_2 1 2 0.4511 0.0440 0.3698 0.4527 0.5453 10.2453
## T0cov_2_1 2 1 0.4511 0.0440 0.3698 0.4527 0.5453 10.2453
## T0cov_2_2 2 2 1.0030 0.0517 0.9071 1.0062 1.0985 19.4119
## dtDRIFT_1_1 1 1 0.9454 0.0052 0.9344 0.9461 0.9543 180.7894
## dtDRIFT_1_2 1 2 0.0156 0.0040 0.0068 0.0159 0.0241 3.8932
## dtDRIFT_2_1 2 1 0.0122 0.0042 0.0049 0.0120 0.0214 2.9330
## dtDRIFT_2_2 2 2 0.9461 0.0048 0.9350 0.9464 0.9554 196.2402

Figure 29: Results (Part 1) of a Full CoTiMA with six studies (ctmaFit)

diagonal was fixed to 1.0. By this, each manifest variable loads on a single latent
factor. Conversely, each latent factor is identified by a single manifest variable.

MANIFESTMEANS is a matrix (with a single column only) containing the means
of the intercepts of the manifest variables. Again, all values were fixed to 0.0
because we deal with standardized variables here.

CINT are the continuous time intercepts, which in case of standardized vari-
ables are usually zero. asymCint are the asymptotic continuous time intercepts.
They reflect the intercept values to which the process converges after infinite
time. These values should also be 0.0 in the case of CoTiMA, where we use
standardized variables (correlations).

Similarly, DIFFUSIONcov are the continuous time error variances (usually re-
ferred to as innovations in the literature), and asymDIFFUSIONcov reflect asymp-
totic diffusion (error) variances and covariances. One might speculate that the
asymptotic diffusion (error) variances should be 1.0 since one cannot explain
any variance across infinite time. However these estimates are based on internal
transformations. Asymptotic matrices are internally useful to reduce the time
to fit the model and have no inherent meaning.

MANIFESTcov is a matrix of variances and covariances among the manifest
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variables at each measurement occasion. All values were fixed to 0.0 because
we had only a single manifest indicator per latent factor.

## $randomEffects
## NULL
##
## $minus2ll
## [1] 14007.6
##
## $n.parameters
## [1] 40
##
## $opt.lag
## [,1] [,2]
## [1,] NA 19
## [2,] 19 NA
##
## $max.effects
## [,1] [,2]
## [1,] NA 0.1062
## [2,] 0.0856 NA
##
## $clus.effects
## NULL
##
## $message
## [1] "Mean time interval was 7.57142857142857. It is recommended to fit"
## [2] "the model again using the arguments scaleTime=1/12 and "
## [3] "customPar=FALSE. If the model fit (-2ll) is better (lower),"
## [4] "continue using, e.g., scaleTime=1/12 in all subsequent models."

Figure 30: Results (Part 2) of a Full CoTiMA with six studies (ctmaFit)

Part 2 of the results generated by the code in Figure 28 is shown in Figure
30. A random effects model was not requested because in our experience it
hardly yields reasonable results11. Random effects are not reported because
they were not requested. The -2 loglikelihood values and number of estimated
parameters are reported next. Then the optimal time interval according to
Dormann and Griffin (2015) and the sizes of effects across the optimal interval
are reported. Finally, CoTiMA allows to account for hierarchically structured
(also called nested or clustered) primary studies. We will discuss this in the
next example. Since no clusters were specified, cluster effects (clus.effects)
do not exist. Finally, a warning message is issued that the average time intervals
might have been too long to ensure proper fitting, and it is recommended to fit
the model again using the scaleTime=1/12 (and customPar=FALSE) argument.

11A ctsem model of a single primary study could be used to estimate random effects if the
study comprises three or more waves. We have not yet investigated how large the portion of
primary studies with three or more waves has to be to yield reasonable CoTiMA estimates.
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7.2 Partial CoTiMA (ctmaFit)
Figure 31 demonstrates some further possibilities for conducting a CoTiMA; ad-
ditional capabilities are explained in Appendix A. The CoTiMA model specified
in Figure 31 fixes the effect of V2toV1 to 0.0 (which we do not generally rec-
ommend - let the evidence decide rather theoretical expectations), by labeling
the according drift 0 or “0”. Further, only the effect V1toV2 is invariant across
primary studies as specified in the invariantDrift argument (which could be
reasonable – and which could be decided based upon a statistical test). Finally,
the first three primary studies were from The Netherlands, whereas studies 3, 4
and 5 (study numbers 128, 18 & 32), were from UK, Germany, and Canada, re-
spectively. This hierarchical structure is specified in the cluster argument. In
the cluster argument, the studies that belong to one cluster receive the same
number. Finally, coresToUse is specified here in negative notation, and -1 im-
plies that all cores except 1 are used. As noted earlier, on Windows machines
one should use 1 (not more than 1).

CoTiMAPart134Inv3Fit_6 <- ctmaFit(ctmaInitFit = CoTiMAInitFit_6_NUTS,
drift=c("V1toV1", 0,

"V1toV2", "V2toV2"),
invariantDrift=c("V1toV2"),
cluster=c(1,1,1,2,3,4),
coresToUse = -1)

saveRDS(CoTiMAPart134Inv3Fit_6, file=paste0(activeDirectory,
"CoTiMAPart134Inv3Fit_6.rds"))

summary(CoTiMAPart134Inv3Fit_6)

Figure 31: A partial CoTiMA with a subset of primary studies, with one cross
effect fixed to 0.0, with only a single effect invariant across primary studies, and
with countries used as cluster variable (ctmaFit)

Parts of the summary are shown in Figure 32. The section $estimates shows
the aggregated effect across all studies with country specific effects partialled
out. Here, V1toV2 is -.0093.

The section $clus.effects shows how the studies from The Netherlands
(cluster 1) differ from the average effects, of which the drift effects are again
of major importance. Note that cluster effects only exist for clusters compris-
ing more than one single study; for all other studies it would be impossible to
disentangle study-specific and cluster-specific effects. Each primary study (ex-
cept the last one) is internally represented as a dummy variable, which affects
the T0 variances and covariances, the diffusion parameters, and – not the drift
parameters because they should be invariant (i.e., aggregated) across studies.
Cluster dummies affect all of them. If a cluster would contain a single study
only, its cluster dummy as well as its single study dummy would be perfectly
correlated in affecting T0 variances and covariances and diffusion parameters.
Thus, clusters have to contain more than a single study.

Additionally, the section $clus.effects show that the auto effect of de-
mands (V1toV1 ) and the cross effect of demands on burnout (V1toV2 ) are
significantly smaller in The Netherlands. Although it is not too important at
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## $estimates
## Mean sd 2.5% 50% 97.5% Tvalues
## DRIFT V1toV1 -0.0932 0.0180 -0.1326 -0.0914 -0.0632 -5.1664
## DRIFT V2toV1 0.0000 0.0000 0.0000 0.0000 0.0000 NaN
## DRIFT V1toV2 (invariant) -0.0093 0.0092 -0.0272 -0.0094 0.0085 -1.0146
## DRIFT V2toV2 -0.0592 0.0056 -0.0708 -0.0589 -0.0491 -10.6445
##
## $clus.effects
## $clus.effects$effects
## mean sd 2.5% 50% 97.5% Tvalues
## Cluster_1_on__V1toV1 -0.0842 0.0347 -0.1649 -0.0798 -0.0303 -2.4266
## Cluster_1_on__V1toV2 -0.0359 0.0106 -0.0566 -0.0360 -0.0147 -3.3811
## Cluster_1_on__V2toV2 0.0027 0.0058 -0.0089 0.0029 0.0139 0.4696
## Cluster_1_on__diff_eta1 0.2545 0.2938 -0.1061 0.1851 1.0055 0.8663
## Cluster_1_on__diff_eta2_eta1 0.1950 0.8070 -1.3956 0.1895 1.7545 0.2416
## Cluster_1_on__diff_eta2 0.1686 0.3349 -0.1442 0.0580 1.0853 0.5035
## Cluster_1_on__T0var_eta1 4.9612 9.1557 -0.4371 -0.0035 32.1056 0.5419
## Cluster_1_on__T0var_eta2_eta1 -0.0335 2.6489 -5.2217 -0.0616 5.2375 -0.0126
## Cluster_1_on__T0var_eta2 8.7315 14.5774 -0.4350 0.0456 49.3086 0.5990
##
## $clus.effects$weights
## non Members Cluster Member
## 1_on__ -0.8591 1.1631
##
## $clus.effects$sizes
## non Members Cluster Member
## N 773 571
##
## $clus.effects$cluster.specific.effect
## DRIFT V1toV1 DRIFT V2toV1 DRIFT V1toV2 (invariant) DRIFT V2toV2
## Cluster No. 1 -0.1911 NA -0.0511 -0.0561
##
## $clus.effects$note
## [1] "The weights represent standardized cluster dummies. "
## [2] "They are used to multiply a cluster's TI effect and"
## [3] "this product is then added to the average effect shown in"
## [4] "$estimates, which overall yields the effects within a"
## [5] "cluster as shown in $cluster.specific.effect."
##
##
## $mod.effects
## NULL

Figure 32: Results of the partial CoTiMA specified in Figure 31 (ctmaFit)

this stage to know the country-specific effects (the main issue is that they are
partialled out), they are shown in the section cluster$specific$effect in
Figure 32. For instance, consider V1toV2. Since the cluster effect (-.0359) was
significant because the credible interval excluded zero (LL = – .0566; UL = –
.0147), one would conclude that there is no general effect of demands on burnout
(– .0093, LL = – .0272, UL = .0085), but in The Netherlands the continuous
time drift effect is significantly smaller and – .0511.

29



7.3 CoTiMA with equality constraints (ctmaFit, ctmaEqual,
ctmaCompFit)

To statistically test if two or more effects are equal is a bit complex and requires
three steps: (1) ensure correct coding (polarity), (2) fit a partially invariant
CoTiMA using ctmaFit, and (3) test equality using ctmaEqual. First, (1) one
has to take care that the effects to be compared have equal signs. For example,
consider a model with three latent variables such as demands, resources, and
burnout. Work-related resources, such as supervisor support, can be supposed
to reduce burnout whereas demands increase burnout. To compare the effect
sizes, one would need to go back to square one and re-start the EPIC part of the
workflow. When preparing the correlations with ctmaEmpCov, one would need to
use the recode argument to recode supervisor support so that it becomes lack
of supervisor support. Then, one has to use ctmaInit again for initial fitting.

In the second step (2), one could start testing the equality of the effect sizes
of supervisor support and of demands on burnout. This requires two CoTiMAs
to be performed. The first CoTiMA has to specify those two or more effects
as invariant across studies that should be tested for equality in the subsequent
step. This is done with ctmaFit. We call this the invariance model.

CoTiMAFullInv23Fit_6 <- ctmaFit(ctmaInitFit = CoTiMAInitFit_6_NUTS,
invariantDrift = c("V2toV1", "V1toV2"),
coresToUse = -1)

saveRDS(CoTiMAFullInv23Fit_6, file=paste0(activeDirectory,
"CoTiMAFullInv23Fit_6.rds"))

summary(CoTiMAFullInv23Fit_6)

CoTiMAFullInvEq23Fit_6 <- ctmaEqual(CoTiMAFullInv23Fit_6,
coresToUse = -1)

saveRDS(CoTiMAFullInvEq23Fit_6, file=paste0(activeDirectory,
"CoTiMAFullInvEq23Fit_6.rds"))

summary(CoTiMAFullInvEq23Fit_6)

Figure 33: Two-step procedure for testing the equality of two cross effects
(ctmaFit, ctmaEqual)

Third (3), the CoTiMA fit object returned then serves as an argument for
ctmaEqual. The code for Step 2 and 3 is shown in Figure 33.

We skip displaying the output returned from summary(CoTiMAFullInv23-
Fit_6) here because it is sufficient to note that V1toV2 = .0131, V2toV1 =
.0160, -2ll = 14007.6, and the number of estimated parameters = 40. V1toV2
and V2toV1 were the only parameters that were aggregated, that is, invari-
ant across primary studies. This is recognized by ctmaEqual, which, in ad-
dition to their invariance, constrains V1toV2 and V2toV1 to be equal. We
call this the equality model. Again, we skip displaying the output returned
from summary(CoTiMAFullEq23Fit_6) here because it is sufficient to note that
V1toV2 = V2toV1 = .0144, -2ll = 14007.74, and the number of estimated
parameters = 39.

The -2ll difference test examines if the fit (-2ll value) of the equality model
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## [1] " ### NEXT MODEL COMPARISON ###"
## [2] "Model: V2toV1 unequal but invariant across samples"
## [3] "V1toV2 unequal but invariant across samples"
## [4] "COMPARED WITH Model: V2toV1_eq_V1toV2"
## [5] "Diff_Minus2LL: 0.144156491554895"
## [6] "Diff_df (= Diff_n.params): 1"
## [7] "prob: 0.70418336974162"
## [8] "Message1: A prob value < .05 indicates a significant difference."

Figure 34: Result of the -2ll difference test comparing the fit of the invari-
ance model with the fit of the equality to test if two cross effects are equal
(ctmaEqual)

is statistically worse than the fit of the invariance model. If this would be the
case, then the hypothesis that both effects are equal has to be rejected and the
alternative hypothesis that one effect (V2toV1 in this example) is significantly
larger than the other one (V1toV2 in this example), will be retained. The -2ll
difference test is automatically performed by ctmaEqual, too, it is displayed at
the end of the summary(CoTiMAFullInv23Fit_6), and it is shown in Figure 34.
In our example, the -2ll difference test was not significant. Thus, we could not
reject the hypothesis that V1toV2 = V2toV1.

Finally, we shall mention the ctmaCompFit function that comes with the Co-
TiMA package. The ctmaCompFit function is automatically used by ctmaEqual.
It can also be applied whenever researchers want to compare two model fits with
a -2ll difference test by using ctmaCompFit(CoTiMAFit1, CoTiMAFit2). Note,
however, that the result is only valid if the two models are nested, that is, the
second model is derived from the first model by constraining parameters. Such
constraints are present, for example, if parameters are eliminated from a model
by constraining them to be 0.0, or by constraining other parameters to be equal.
The former is achieved by setting the desired drift effect to “0”, and the latter
is achieved by assigning identical labels to the desired drift effects. This could
be done with the ctmaInit and ctmaFit functions. For example, the argument
drift=c(“V1toV1”, 0, 0, “V1toV1”) could be used to fit a model that has no cross
effects and equal auto effects. This model is nested in a full CoTiMA model
because it is more constrained.

7.4 Moderated CoTiMA (ctmaFit)
CoTiMA can handle multiple continuous moderators and multiple categorical
moderators, however, it is not yet possible to mix categorical and continuous
ones. In general, we recommend starting with a single moderator to foster un-
derstanding how they operate before analyzing multiple moderators combined.

Recalling from Figure 18, we entered information about two moderators.
The fist was the type of burnout measure applied in a primary study, which was
either exhaustion or emotional exhaustion, and which was a categorical moder-
ator. If there were two or more categorical moderators, the moderator numbers
and moderator names would have to be provided as vectors (e.g., mod.number
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CoTiMAMod1onFullFit_6 <- ctmaFit(ctmaInitFit = CoTiMAInitFit_6_NUTS,
mod.number = 1,
mod.type = "cat",
mod.names = "Burnout Measure",
coresToUse = -1,
scaleMod = FALSE)

saveRDS(CoTiMAMod1onFullFit_6, file=paste0(activeDirectory,
"CoTiMAMod1onFullFit_6.rds"))

summary(CoTiMAMod1onFullFit_6)

Figure 35: A full moderated CoTiMA with a single categorical moderator
(ctmaFit)

## $estimates
## row col Mean sd 2.5% 50% 97.5% Tvalues
## DRIFT_V1toV1 1 1 -0.0470 0.0047 -0.0570 -0.0469 -0.0383 -9.9174
## DRIFT_V2toV1 1 2 0.0121 0.0033 0.0057 0.0121 0.0185 3.7010
## DRIFT_V1toV2 2 1 0.0094 0.0034 0.0026 0.0095 0.0163 2.7380
## DRIFT_V2toV2 2 2 -0.0471 0.0049 -0.0575 -0.0468 -0.0382 -9.6043
##
## $randomEffects
## NULL
##
## $minus2ll
## [1] 13825.68
##
## $n.parameters
## [1] 44
##
## $mod.effects
## mean sd
## 2. smallest value (category) of Burnout Measure_on_V1toV1 -0.1079 0.0082
## 2. smallest value (category) of Burnout Measure_on_V2toV1 0.1460 0.0388
## 2. smallest value (category) of Burnout Measure_on_V1toV2 0.0925 0.0336
## 2. smallest value (category) of Burnout Measure_on_V2toV2 -0.0798 0.0077
## 2.5% 50%
## 2. smallest value (category) of Burnout Measure_on_V1toV1 -0.1250 -0.1076
## 2. smallest value (category) of Burnout Measure_on_V2toV1 0.0693 0.1464
## 2. smallest value (category) of Burnout Measure_on_V1toV2 0.0270 0.0920
## 2. smallest value (category) of Burnout Measure_on_V2toV2 -0.0954 -0.0796
## 97.5% Tvalues
## 2. smallest value (category) of Burnout Measure_on_V1toV1 -0.0928 -13.1871
## 2. smallest value (category) of Burnout Measure_on_V2toV1 0.2217 3.7573
## 2. smallest value (category) of Burnout Measure_on_V1toV2 0.1589 2.7515
## 2. smallest value (category) of Burnout Measure_on_V2toV2 -0.0654 -10.3318

Figure 36: Part of the results moderated full CoTiMA (ctmaFit)

= c(1, 3), mod.names = c(“Burnout Measure”, “Study Quality”)). How-
ever, in the present example, we use the first potential moderator variable only
(mod.number = 1 in Figure 35), which was categorial (mod.type = “cat” in
Figure 35) representing two types of burnout measures (mod.names = “Burnout
Measures” in Figure 35). By default CoTiMA does not standardize modera-
tors. In the present example, we made this explicit by including the argument
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scaleMod = FALSE. Thus, the k - 1 dummy variables created from the k cate-
gories of the moderator variable use values 0 and 1, which facilitates interpre-
tation of categorical moderator effects.

Part of the results are shown in Figure 36. The drift effects shown in the
$estimates section are those in the reference group, which is always the group
with the smallest category number. In the present example, these are the pri-
mary studies for which the moderator was 1 meaning they used an emotional
exhaustion scale to measure burnout.

Figure 37: The cross-lagged effect V1toV2 moderated by type of burnout mea-
sure (1 = emotional exhaustion, 2 = exhaustion) from 1 to 36 months. The
horizontal location of the category indicators 1 and 2 has no inherent meaning.

The section $mod.effects in Figure 36. show the effects belonging group
with the 2nd smallest category number. In case there were more categories, one
would find here four additional rows starting with 3. smallest value etc. It
is important to note that this section does not show the drift effects. Rather, it
shows how in this category, which used an exhaustion compared to emotional
exhaustion scale to measure burnout, the drift effects change compared to the
reference group. Both auto effects are significantly more negative (i.e., the
variables were less stable). Both effects show that in this category the two cross
effects were significantly stronger than the already significant cross effects in
the reference group. We call this a positive moderating effect of the exhaustion
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scale.
As always, the sizes of continuous time effects are virtually impossible to

interpret. For example, the effect V1toV2 is .0094 for emotional exhaustion
and .0094 + .0925 = 0.1019 for exhaustion, the latter thus being roughly ten
times as large as the former. However, how these effects unfold over time also
depends on the other three effects V1toV1, V2toV2, and V2toV1. Therefore,
we used plot(CoTiMAMod1onFullFit_6, timeUnit = "Months", timeRange
= c(1, 36, 1)) to plot the moderated discrete time effects. For V1toV2, the
course of the moderated effect over discrete time is shown in Figure 39.

CoTiMAMod2on23Fit_6 <- ctmaFit(ctmaInitFit = CoTiMAInitFit_6_NUTS,
mod.number = 2,
mod.type = "cont",
mod.names = "Control",
moderatedDrift = c("V1toV2", "V2toV1"),
scaleMod=TRUE,
coresToUse = -1)

saveRDS(CoTiMAMod2on23Fit_6, file=paste0(activeDirectory,
"CoTiMAMod2on23Fit_6.rds"))

summary(CoTiMAMod2on23Fit_6)
plot(CoTiMAMod2on23Fit_6, timeUnit = "Months", timeRange = c(1, 36, 1))

Figure 38: A partial moderated CoTiMA with a single continuous moderator
(ctmaFit)

The code for a partial moderated CoTiMA with a single continuous moder-
ator is shown in Figure 38. In the model, only the cross effects are moderated.
It is recommended to standardize continuous moderators, which is achieved by
scaleMod = TRUE. The summary (not shown) reveals that control significantly
reduces V2toV1 (i.e., the moderating effect) by -.0851 from the average effect,
which is V2toV1 = .2777 (i.e., the main effect).

The plot function in Figure 37 yields the plot shown in Figure 39. Across
all time intervals, for people who have low levels of control at work, effects of
demands on burnout are larger than for those with high levels of control. In
most empirical articles that visualize moderator effects for moderator values at
+2SD and -2SD are not shown. This could be achieved by using mod.values
= c(-1, 0, 1) as additional argument for the plot function in Figure 37.

8 Bias & Generalizability (ctmaBiG)
After finishing the EPIC part of the EPIC-BiG-Power workflow, we can now turn
to the first part of the BiG workflow, which is done by using ctmaBiG. It performs
Egger’s tests for drift coefficients (e.g., Sterne & Egger, 2001) and provides PET-
PEESE corrections of fixed effect estimates (Stanley & Doucouliagos, 2014).
Random effect estimates are also computed. Various measures of heterogeneity
(cf. Borenstein, Hedges, Higgins, & Rothstein, 2009) as well as measures of
expected replications rates (ERR) and expected discovery rates (EDR; Bartoš &
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Figure 39: The cross-lagged effect V2toV1 moderated by control at work from
1 to 30 months. The lines show the effect of V2toV1 for control at -2SD below
the mean of control (-2), -1SD below the mean of control (-1), at the mean of
control (0), +1SD above the mean of control (1), and +2SD above the mean the
mean of control (2). The horizontal location of the SD values has no inherent
meaning.

Schimmack, 2020; Brunner & Schimmack, 2020) are also provided by ctmaBiG.
The return object of ctmaBiG can be used to plot funnel plots and forest plots.

To proceed with ctmaBiG, we use the init fit-file published in the online
repository of Dormann, Guthier, and Voelkle (2020) that belongs to their Co-
TiMA of job stressors and burnout12. The file containing their init fit-object
can be retrieved from the website of the Open Science Foundations with the
code shown in Figure 40. Note that Guthier et al. (2020) used a preliminary
CoTiMA version that was based on the OpenMx R-package (Boker et al., 2011),
whereas the file we suggest downloading was created with the rstan R-package
(Stan Development Team, 2020b). The latter samples parameter estimates from

12The data set of 6 primary studies we have been using up to this point is not really useful
for the analyses presented in this section. First, we introduced missing values for study 128 in
order to show how this could be done. This could be useful in full and partial CoTiMAs, but
it is mathematically impossible to estimate all four cross effects in this study given that V1
at T1 was missing. The model is said to be mathematically not identified. Excluding study
128 would leave us with five studies only, which would not produce reliable results
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generated parameter distribution and results thus slightly change from analysis
to analysis (unless the argument finishsamples is set to a large value, e.g.,
10000). So one should expect minor differences compared to the results re-
ported in Guthier et al. (2020). On the other hand, the init fit-object contains
all information required to replicate all their results with minor deviations13.
Note, however, computations would last several hours except of ctmaBiG. This
is the major reason why we did not use their init fit-object before.

dl_link <- "https://osf.io/download/qhpae/"
target_file <- paste0(activeDirectory, "/CoTiMAInitFit_D_BO_stanct.rds")
download.file(dl_link, target_file)
CoTiMAInitFit_D_BO <- readRDS(target_file)
saveRDS(CoTiMAInitFit_D_BO, paste0(activeDirectory, "CoTiMAInitFit_D_BO.rds"))

Figure 40: Downloading the Init-Fit file of Guthier et al. (2020)

CoTiMABiG_D_BO <- ctmaBiG(CoTiMAInitFit_D_BO)
summary(CoTiMABiG_D_BO)
plot(CoTiMABiG_D_BO)

Figure 41: Analysis of bias and generalizability, summary of results, and plotting
(ctmaBiG)

The analysis of bias and generalizability, summarizing the results, and plot-
ting forest plots and funnel plots is achieved with the code in Figure 41. First,
results of fixed effects analyses of single drift coefficients are displayed. Recall
that in CoTiMA all drift effects (full CoTiMA) or a subset (partial CoTiMA)
is aggregated simultaneously, thereby taking the entire causal system into ac-
count. Thus, CoTiMA estimates a set of fixed effects by a multi group SEM
which constraints a set of drift effects to be invariant across groups (i.e., primary
studies). Estimation is based on minimization of the discrepancy between the
model implied covariance matrices and their empirical counterparts.

Contrary, in terms of a traditional fixed and random effects analysis, the
drift effects of all primary studies, which resulted from the initial fitting of ctsem
models one by one rather than as a set, are analyzed. Estimation is based on
the standard errors of the drift effects rather than on minimizing discrepancies
between implied and empirical covariance matrices. The fixed effect estimates
of the two cross effects reported in the section $‘Fixed Effects of Drift
Coefficients‘ of Figure 42 were V1toV 2 = .0024 (p < .001) and V2toV1 =
.0054 (p < .001).

The next section in Figure 42 is $Heterogeneity. Here τ2, H2, and I2 are
shown, of which I2 is usually of most interest. Note that estimates of τ2 were
small so even four decimal places are not sufficient to show this. Consequently,

13In addition to the fitted ctsem models of each primary study, it is possible to extract
all information from an init fit-object that were originally complied with ctmaPrep by, e.g.,
originalStudyList <- initFitObject$primaryStudyList. Thus, replicability of CoTiMA
results is easily enabled by making one’s init fit-object available for download in an repository,
for example, using the Open Science Framework http://osf.io/.
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## $`Fixed Effects of Drift Coefficients`
## V1toV1 V2toV1 V1toV2 V2toV2
## MeanOfDriftValues -0.0590 0.0219 0.0112 -0.0539
## FixedEffect_Drift -0.0219 0.0054 0.0024 -0.0133
## FixedEffect_DriftVariance 0.0000 0.0000 0.0000 0.0000
## FixedEffect_DriftSE 0.0004 0.0004 0.0003 0.0003
## FixedEffect_DriftUpperLimit -0.0211 0.0061 0.0030 -0.0128
## FixedEffect_DriftLowerLimit -0.0227 0.0047 0.0017 -0.0139
## FixedEffect_DriftZ -54.3360 14.8412 7.4877 -46.5243
## FixedEffect_DriftProb 0.0000 0.0000 0.0000 0.0000
##
## $Heterogeneity
## V1toV1 V2toV1 V1toV2 V2toV2
## tau2Drift 0.0001 0.0001 0.0000 0.0001
## Q_Drift 772.8459 534.4175 217.4290 1236.0298
## H2_Drift 16.4435 11.3706 4.6261 26.2985
## H2DriftUpperLimit 18.0367 12.6087 5.2890 28.4874
## H2DriftLowerLimit 14.9911 10.2540 4.0463 24.2778
## I2_Drift 93.9186 91.2054 78.3837 96.1975
## I2DriftUpperLimit 94.9455 92.8478 83.4626 96.7594
## I2DriftLowerLimit 92.6831 89.1858 71.7451 95.5382
##
## $`Random Effects of Drift Coefficients`
## V1toV1 V2toV1 V1toV2 V2toV2
## RandomEffecttot_Drift -0.0402 0.0114 0.0061 -0.0380
## RandomEffecttot_DriftVariance 0.0000 0.0000 0.0000 0.0000
## RandomEffecttot_DriftSE 0.0021 0.0017 0.0011 0.0021
## RandomEffecttot_DriftUpperLimit -0.0360 0.0147 0.0082 -0.0339
## RandomEffecttot_DriftLowerLimit -0.0444 0.0080 0.0039 -0.0420
## RandomEffecttot_DriftZ -18.8203 6.6986 5.5511 -18.2134
## RandomEffecttot_DriftProb 0.0000 0.0000 0.0000 0.0000
## RandomEffecttot_DriftUpperLimitPI -0.0169 0.0289 0.0153 -0.0148
## RandomEffecttot_DriftLowerLimitPI -0.0635 -0.0062 -0.0032 -0.0611

Figure 42: Part 1 of results of ctmaBiG

between study heterogeneity as indicated by I2 was larger with the exception
of the (small) effect V1toV2.

The third section ($‘Random Effects of Drift Coefficients‘) in Figure
42 displays the random effect estimates, their SE, confidence intervals (Limit),
and the z -values with their associated probability levels. In addition, prediction
intervals (LimitPI) also allow assessing the degree of heterogeneity. Prediction
intervals describe a region in which about 95% of the true study effects are
expected to be found (e.g., Guddat, Grouven, Bender, & Skipka, 2012). The
effects V1toV2 = .0061 (p < .001) and V2toV1 = .0114 (p < .001) were larger
than their fixed effects counterparts reported earlier. Note that the correspond-
ing CoTiMA (fixed) effects reported by Guthier et al. (2020) were V1toV2 =
.0039 (p < .001) and V2toV1 = .0084 (p < .001), and they were right in the
middle between the traditional fixed and random effects estimates.

Part 2 of the results returned from ctmaBiG is shown in Figure 43. These
results directly address possible publication bias. Egger’s tests (e.g., Sterne &
Egger, 2001) is a statistical test of funnel plot asymmetry. Significant results
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## $`PET-PEESE corrections`
## V1toV1 V2toV1 V1toV2 V2toV2
## PET_Drift -0.0148 0.0031 0.0010 -0.0079
## PET_SE 0.0014 0.0015 0.0008 0.0010
## PEESE_Drift -0.0206 0.0048 0.0021 -0.0126
## PEESE_SE 0.0013 0.0012 0.0007 0.0013
## PET_PEESE_Drift -0.0206 0.0048 0.0010 -0.0126
## PET_PEESE_SE 0.0013 0.0012 0.0008 0.0013
## WLS_Drift -0.0219 0.0054 0.0024 -0.0133
## WLS_SE 0.0016 0.0012 0.0007 0.0015
##
## $`Egger's tests`
## V1toV1 V2toV1 V1toV2 V2toV2
## Egger's b0 -3.9484 1.4749 1.0973 -4.9827
## SE(b0) 0.5032 0.5854 0.3510 0.5146
## T -7.8459 2.5196 3.1259 -9.6831
## p 0.0000 0.0153 0.0031 0.0000

Figure 43: Part 2 of results of ctmaBiG

indicate that small-N studies produced larger effect sizes (i.e., more positive, if
the true effect is positive & more negative, if the true effect is negative), suggest-
ing that the aggregated effects are biased. Thus, the results in the $‘Egger’s
tests‘ part of Figure 43 suggest that the cross effects are biased upwards, and
the two auto effects are biased downwards. The latter means that demands and
burnout in small-N studies are less stable than in large-N studies. This could
have many reasons. For instance, if job stress studies with small-N were based
on single organizations or single occupations, variance might be restricted, im-
plying lower test-retest correlations eventually resulting in smaller auto effects.
Contrary, this reasoning would also imply smaller cross effects, which was not
the case. Selective reporting might be a more plausible reason here.

Precision-effect test and precision effect estimates with standard errors (PET-
PEESE; Stanley & Doucouliagos, 2014) removes small sample bias (selective
reporting) from the fixed effect estimates in an ’aggressive’ fashion (Stanley,
Carter, & Doucouliagos, 2018, p. 1333). PET-PEESE involves a decision rule
when PET or PEESE is more important. The result of this decision is the
PET_PEESE_Drift row in the section $‘PET-PEESE corrections‘ of Figure 43.
The WLS_Drift estimates of the auto effects V1toV1 and V2toV2, which are
identical to the fixed effect estimates in Figure 42 (but have more appropriate
SE ), are more negative compared to their corrected PET_PEESE_Drift counter-
parts, but the differences are not very large. This also applies to the V2toV1
cross effects, representing the effect of earlier burnout on later burnout. How-
ever, PET-PEESE of V1toV2 = .0010, which is less than 1/5 of the fixed effect.
Hence, the true effect of earlier demands on later burnout is probably much
smaller than suggested by the fixed effect estimate.

Results of Z-Curve 2.0 (Bartoš & Schimmack, 2020) analyses including Ex-
pected Replication Rates (ERR) and Expected Discovery Rates (EDR) based
are displayed in Figure 44. Figure 44 is limited to the auto effect V1toV1 and
the cross effect V1toV2 for space reasons.
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## $`Z-Curve 2.0 Results:`$`Z-Curve 2.0 analysis of
## V1toV1`
## Call:
## zcurve::zcurve(z = tmp1)
## model: EM via EM
## Estimate l.CI u.CI
## ERR 0.979 0.905 1.000
## EDR 0.710 0.386 1.000
## Model converged in 24 + 69 iterations
## Fitted using 25 z-values. 48 supplied, 47 significant
## (ODR = 0.98, 95% CI [0.88, 1.00]).
## Q = -27.94, 95% CI[-36.08, -18.51]
## $`Z-Curve 2.0 Results:`$`Z-Curve 2.0 analysis of
## V1toV2`
## Call:
## zcurve::zcurve(z = tmp1)
## model: EM via EM
## Estimate l.CI u.CI
## ERR 0.573 0.224 0.824
## EDR 0.507 0.050 0.795
## Model converged in 14 + 221 iterations
## Fitted using 20 z-values. 48 supplied, 21 significant
## (ODR = 0.44, 95% CI [0.30, 0.59]).
## Q = -19.87, 95% CI[-28.16, -9.05]

Figure 44: Expected Replication Rates (ERR) and Expected Discovery Rates
(EDR) based on Z-Curve 2.0 analysis of V1toV1 and of V1toV2 by ctmaBiG.

ERR is the probability of finding a significant effect in an exact replication
study. ERR is also called conditional mean power, that is, the mean power
of the subset of all conducted studies that produced significant effects. The
unconditional power, that is, the mean power of all conducted studies, is called
EDR. To put it differently, EDR is the proportion of all studies (published and
unpublished) that found significant effects. EDR can be compared with the
actually Observed Discovery Rate (ODR), that is, the proportion of significant
effects in the subset of studies that have actually been published or otherwise
identified as useful for CoTiMA. If ODR is high and EDR is low, publication
bias is likely.

For the auto effect V1toV 1, one might be tempted to believe that it should
virtually always be replicated (some stability over one month should be present).
However, the credible interval of V1toV1 in the study by Jimenez and Dunkl
(2017) included 0 (cf. Guthier et al., 2020, Table 1), so that only 47 out of 48
studies produced a significant effect, corresponding to the ODR of .98 in Figure
44. Still, ERR and EDR are very large and the CI always include 1.00. For
V1toV2, the difference between ODR and EDR is not too large, either, but in
this case EDR exceeds ODR. This could happen, especially if ODR is within
the 95%CI of EDR, and in most instances it could occur simply due to sampling
error when there is no publication bias.

Funnel plots and forest plots could be obtained with plot(CoTiMABiG_D_BO).
Funnel plots represent the graphical counterpart of Egger’s tests, and they plot
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standard error of effects (an indicator of small N ; y-axis; large at the bottom
& low at the top) against the effect size (x-axis). Without small-N bias, funnel
plots would be symmetric. Conversely, funnel plot asymmetry indicates small-N
bias. The funnel plot of V1toV2, for which Eggers’s and PET-PEESE indicated
large bias, is shown in Figure 45. Effect sizes are clearly asymmetrically dis-
tributed on the right hand side, particularly at the bottom where effect sizes of
small-N studies (with large SE ) are located.

Figure 45: Funnel plot of the effect V1toV2 of the fit object returned by ctmaBiG
(plot)

A better impression of the effects obtained in all primary studies is provided
in forest plots. The effects for each of the primary studies is represented by a
square and their confidence intervals are represented by horizontal lines through
these squares. A forest plot of the V1toV2 effect is shown in Figure 46. The
squares vary in size depending on their sample sizes, and they are sometimes
small because sample sizes varied considerably across primary studies. The
diamond at the bottom shows the aggregated fixed effect. There is no visible
horizontal line for its confidence interval because the overall SE was very small
and, thus, the confidence interval is rather narrow.
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Figure 46: Forest plot of the effect V1toV2 of the fit object returned by ctmaBiG
(plot)

9 Statistical Power (ctmaPower)
Finally, we can turn to the Power part of the EPIC-BiG-Power workflow, which
can be performed with ctmaPower. It conducts two types of analyses. First, it
estimates required sample sizes for a range of different time intervals to achieve a
desired statistical power. This is important for designing future studies. Second,
it calculates the expected power for all primary studies (some-times also referred
to as post hoc power or retrospective power). This is important to know if past
studies might have failed to replicate effects with statistical significance because
they were under-powered.

CoTiMAPower_D_BO <- ctmaPower(ctmaInitFit=CoTiMAInitFit_D_BO,
statisticalPower = c(.50, .80, .95),
coresToUse = -1,
finishsamples = 10000)

saveRDS(CoTiMAPower_D_BO, file=paste0(activeDirectory,
"CoTiMAPower_D_BO.rds"))

summary(CoTiMAPower_D_BO)

Figure 47: Calculating expected (post hoc) power for three different probability
levels (ctmaPower)
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To calculate statistical power, a highly restrictive CoTiMA model has to
be estimated. The most restrictive CoTiMA model estimated so far was the
full CoTiMA, in which all drift effects were constrained to be invariant across
primary studies. To calculate statistical power, a more restrictive model is
required that, in addition, constraints the variance and covariances at T0 as
well as the diffusion coefficients to be invariant. Stated differently, one has to
assume all samples analyzed in the primary studies were drawn from the same
population. There are several arguments that can be used with ctmaPower, and
they are enumerated in the Appendix. In most cases, requesting the desired
levels of power in addition to the init fit-object is probably sufficient. We used
the code in Figure 47 for generating the subsequently discussed output and the
figures.

## V1toV1 (SE) Tvalue V2toV1 (SE) Tvalue V1toV2
## Fixed Effects Drift -0.0525 0.0009 -58.3333 0.0164 0.0008 20.5 0.0119
## Fixed Effects Diffusion 0.0975 0.0013 75.0000 0.0096 0.0008 12.0 0.0096
## Fixed Effects T0Var 0.9982 0.0087 114.7356 0.3757 0.0065 57.8 0.3757
## (SE) Tvalue V2toV2 (SE) Tvalue
## Fixed Effects Drift 0.0007 17.0 -0.0428 0.0007 -61.1429
## Fixed Effects Diffusion 0.0008 12.0 0.0818 0.0010 81.8000
## Fixed Effects T0Var 0.0065 57.8 0.9984 0.0087 114.7586

Figure 48: Estimates of drift parameters using a model with all variance and
covariances at T0, all drift effects, and all diffusion coefficients invariant across
primary studies (ctmaPower)

Then, summary(CoTiMAPower_D_BO) creates a large output on the console
that we again discuss in parts. Figure 48 displays the parameter estimates of
the model with all effects being invariant. These are the parameter estimates
that are regarded as the true effects (mean of the distribution of true effects).
In concert with the sample sizes and the time intervals of the primary studies
(both are taken from CoTiMAInitFit_D_BO and do not need to be provided
as arguments) the true effects determine the statistical power of the primary
studies to achieve significance levels of α = .05 and α =.01. Further, across
a range of time intervals (could be provided with the argument timeRange;
otherwise it is from 1 to 1.5 times the longest interval used in primary studies),
the true effects determine the required sample sizes to and achieve the requested
levels of statistical power.

The next section in the generated output reports the expected power of
primary studies. For the effect of V1toV2, this is displayed in Figure 49. Note
that in Guthier et al. (2020) we reported numerical problems in estimating the
expected statistical power across short time intervals – since then we solved this
issue. We left out several studies (6 to 23 & 28 to 47) for space reasons here.
Assuming the aggregated effects in Figure 49 are the true effects, the probability
values in Figure 49 represent the statistical power each primary study had to
detect the focal true V1toV2 effect (i.e., .0119; see Figure 48) with p < .05
and p < .01. For those studies with more than two measurement occasions,
the statistical power is reported for all adjacent time intervals. At the bottom,
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## N Lag Power (.05) Power (.01) Lag Power (.05) Power (.01)
## Study_No_1 148 12 0.2068 0.0751 <NA> <NA> <NA>
## Study_No_2 188 12 0.2513 0.0983 <NA> <NA> <NA>
## Study_No_3 556 96 0.0527 0.0127 <NA> <NA> <NA>
## Study_No_4 261 12 0.3306 0.145 <NA> <NA> <NA>
## Study_No_5 1378 18 0.9461 0.839 <NA> <NA> <NA>
## ... ... ... ... ... ... ... ...
## Study_No_24 195 3 0.1343 0.0422 <NA> <NA> <NA>
## Study_No_25 999 12 0.8474 0.6581 12 0.8474 0.6581
## Study_No_26 668 12 0.6844 0.4449 12 0.6844 0.4449
## Study_No_27 370 12 0.4419 0.222 12 0.4419 0.222
## ... ... ... ... ... ... ... ...
## Study_No_48 171 3 0.1228 0.0375 <NA> <NA> <NA>
## Mean <NA> <NA> 0.3957 0.2407 <NA> <NA> <NA>
## Median <NA> <NA> 0.3142 0.1348 <NA> <NA> <NA>

Figure 49: Expected (post hoc) power across primary studies (ctmaPower)

median and mean statistical power across all primary studies is shown. For
instance, the median statistical power was .3142 to find a significant V2toV1
effect with p <. 05. As in most meta-analyses, this demonstrates that many
primary studies are heavily under-powered and finding a significant effect is less
likely than like getting heads-up when flipping a coin.

## V1toV2 Power=0.5 V1toV2 Power=0.8 V1toV2 Power=0.95
## 1 2737 5589 9251
## 1.5 1876 3830 6339
## 2 1447 2953 4888
## 3 1020 2082 3445
## 4 810 1652 2733
## ... ... ... ...
## 15 416 847 1400
## 16 415 844 1396
## 17 415 846 1399
## 18 418 851 1407
## 19 421 859 1420
## 20 427 869 1437
## 21 433 882 1459
## ... ... ... ...
## 142 345410 705741 1168433
## 143 368470 752857 1246439
## 144 393512 804022 1331148
## --- --- --- ---
## Min N 415 844 1396

Figure 50: Required sample sizes to achieve requested levels of statistical power
across a range of time intervals (ctmaPower)

The generated output further shows the required samples sizes for (future)
studies to obtain significant effects across different time intervals (Figure 50).
Note that in Guthier et al. (2020) we reported numerical problems in estimating
the required samples across short time intervals – since then we solved this
issue. For most effects and most desired levels of statistical power, required
sample sizes are lowest around 16-18 month intervals. We show how to plot
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required sample sizes against time interval later. Note that the output showing
the required sample sizes would also display the expected (discrete time) effect
sizes, which we omitted from Figure 50.

The last interesting output deals with combinations of possible time intervals
and samples sizes, and it informs about the range of time intervals across which
one could expect significant effects. If neither a sample size (failSafeN) nor a
p-level (failSaveP) is provided as function argument, the average sample size
of the primary studies is used (otherwise the values assigned to failSafeN)
and p < .01 (otherwise the values assigned to failSaveP) are used. As the
$estimates$‘Range of significant effects‘ section in Figure 51 reports,
with N corresponding to the average N = 549 across primary studies, one
should select time intervals between 8-32 months to find a significant V2toV1
effect. With the average N used in primary studies, one cannot expect finding
a significant V1toV2 effect across neither time interval.

## [1] The shortest interval across which the effect (V2toV1) is
## significant with p < 0.01 assuming N = 549 ( = avg. N) is 8. The
## longest interval across which the effect (V2toV1) is significant with
## p < 0.01 assuming N = 549 ( = avg. N) is 32. Note that you have not
## provided an explicit time range for analysis of statistical power. The
## time intervals used ranged from 1 to 1.5 times the longest interval
## used in the primary studies, using integer steps of 1.0. These
## intervals were then augmented by time intervals found in primary
## studies that were non-integers.
## [2] There is no shortest interval across which the effect (V1toV2) is
## significant with p < 0.01 assuming N = 549 ( = avg. N). There is no
## longest interval across which the effect (V1toV2) is significant with
## p < 0.01 assuming N = 549. Note that you have not provided an
## explicit time range for analysis of statistical power. The time
## intervals used ranged from 1 to 1.5 times the longest interval used in
## the primary studies, using integer steps of 1.0. These intervals were
## then augmented by time intervals found in primary studies that were
## non-integers.

Figure 51: Expected range across which significant effects could be expected
(ctmaPower)

Finally, required sample sizes can be plotted. We used plot(CoTiMAPower-
_D_BO, timeUnit="Months", timeRange=c(1, 84, 1) ) to generate the plot
displayed in Figure 52. This figure is based on the values previously shown in
parts in Figure 50
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Figure 52: Required sample sizes across time to achieve a statistical power of
.50, .80, and .95 (plot)
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Appendix. Overview of CoTiMA
Functions and their Arguments

ctmaBiG (EPIC-BiG -Power) Performs fixed effect, random effect
analysis, and analysis of publication
bias (Egger’s tests, PET-PEESE
corrections, z.curve analysis).

Argument Default Possible Values Explanation
ctmaInitFit NULL CoTiMA fit object CoTiMA fit object created with

ctmaInit.
activeDirectory path used

to create
ctmaInit-
Fit
object

character string Specifies the directory where required
files are found and saved. Should end
with “/”. For example,
“/Users/GDC/CoTiMA/”

PETPEESEalpha .10 values between 0
and 1

Probability level (condition) below
which to change from PET to PEESE.

activateRPB FALSE FALSE/ TRUE Messages (warning, finished fitting)
could be send to mobile phone if
TRUE.

digits 4 value > 0 Rounding used in output.

ctmaCompFit (EPIC -BiG-Power) Compares the fit of two nested
CoTiMa models via -2ll difference test.

Argument Default Possible Values Explanation

model1 NULL CoTiMA fit object CoTiMA fit object created with
ctmaInit, ctmaFit, or ctmaEqual.

model2 NULL CoTiMA fit object CoTiMA fit object created with
ctmaInit, ctmaFit, or ctmaEqual.

ctmaCorRel (EP IC-BiG-Power) Corrects (disattenuates) correlation
matrix for unreliabilities.

Argument Default Possible Values Explanation

empcov NULL symmetric
correlation matrix

alphas NULL vector of the same
length as
dimensionality of
empcov
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ctmaEmpCov (EP IC-BiG-Power) Changes a full correlation matrix by
selecting target variables, recode them,
combine them (add), and add
rows/columns with NA if focal
variables are missing.

Argument Default Possible Values Explanation

targetVariables NULL vector of variable
positions or
variable names

Selects desired variables in empcovi
(i.e., deletes those variables that should
not be analyzed). For example, c(1, 2,
4, 5) deletes the 3rd and 6th row and
column in a 6 × 6 empcovi . Instad of
positions, variable names could be used
if dimnames were assigned to empcovi .

recodeVariables c() vector of variable
positions or
variable names

Recodes desired variables in empcovi
(i.e., changes the signs of the
correlations). For example, c(1, 4)
changes the signs of the correlations in
the 1st and 4th row of empcovi . Instad
of positions, variable names could be
used if dimnames were assigned to
empcovi . Note that if numbers are
used, they should correspond to the
positions in the targetVariablesi
object rather than the ros/columns in
the empcovi object (i.e., recoding is
done after targetVariablesi were
selected from empcovi ).

combineVariables c() list of (vectors of)
variable positions

Creates composite variables (i.e.,
means of one or more variables).
Variables that should be combined
have to be listed in a vector. Variables
that should not be combined have to
be listed, too. For example, list(1,
c(2, 3), 4, c(5, 6)) combines the 2nd
and 4rd as well as the 5th and 6th
variables of empcovi . and leaves the 1st
and 4th variable untouched. Instead of
positions, variable names could be used
if they were also used in the argument
targetVariables.

combineVariables-
Names

c() vector variable
names for
combined variables

not yet operational

missingVariables c() vector of variable
positions

Augments empcovi and pairwiseNi by
rows and columns containing NA in
order to create matrices of the desired
dimension. For example, if the desired
matrix should contain correlations of
the four variables x0, y0, , x1 and y1,
but a primary study did not measure
y1, then the 4th variable is missing and
the correlation matrix returned by
ctmaEmpCov will be a 4 × 4 empcovi
and a 4 × 4 pairwiseNi with NA in the
4th row and in the 4th column,
respectively.
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ctmaEmpCov (EP IC-BiG-Power) Changes a full correlation matrix by
selecting target variables, recode them,
combine them (add), and add
rows/columns with NA if focal
variables are missing.

nlatents NULL value > 0 The number of (latent) variables.
Actually it is the number of all
variables at T0. A distinction between
latent and manifest variables is not
made here.

Tpoints NULL value > 1 The number of time points.
sampleSize NULL value > 0 The sample size. It does not need to be

specified if pairwiseNi is provided
instead.

pairwiseN NULL symmetrix matrix
of same dimensions
as empcov
containing possible
pairwiseN.

A matrix with sample sizes for each
correlation of empcovi.

empcov NULL symmetric
correlations matrix

Correlation matrix reported in a
primary study.

ctmaEqual (EPIC -BiG-Power) Statistically tests if the two or more
invariant drift parameters in the
Co-TiMAFit object supplied are equal

Argument Default Possible Values Explanation

ctmaInvariantFit NULL CoTiMA fit object CoTiMA fit object thas was returned
by ctmaFit. In most cases this is
probably the fit of a model in which
two effects were specified with the
invariantDrift argument (e.g., two
cross effects).

activeDirectory path used
to create
ctmaInit-
Fit
object

path to directory Specifies the directory where required
files are found and saved. Should end
with “/”.

activateRPB FALSE FALSE/ TRUE Messages (warning, finished fitting)
could be send to mobile phone if
TRUE.

digits 4 value > 0 Rounding used in output.
coresToUse 1 value > 0 or < 0 The number of cores (threads) to be

used for fitting. If a negative values is
specified, the value is subtracted from
available cores, else the value sets the
number of cores to be used. Should
usually be 1 on Windows OS.
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ctmaEx (-) Loads R objects created in the
examples (figures) of this User’s Guide
into the user’s R environment

Argument Default Possible Values Explanation

example NULL The figure in this
User’s Guide in
which the desired R
oibjects are created

The ’ Figure’ + number (e.g., ’Figure
2’) which contains the R objects that
should be loaded or fitted. For
example, ctmaEx(’Figure 2) loads
empocv2, delta_t2 in the user’s R
environment.

do ’add’ ’add’ or ’remove’ Specifies wether the desired R objects
should be added or removed from the
user’s R environment. For example,
ctmaEx(“Figure 3”, fit=TRUE) creates
the CoTiMAstudyList_3 by applying the
ctmaPrep function.

fit FALSE FALSE/ TRUE Specifies of CoTiMA objects (i.e.
objects created wi a ctmaXxxx function)
should only be loaded or actually be
fitted

ctmaFit (EPIC -BiG-Power) Fits a CoTiMA model.
Argument Default Possible Values Explanation
ctmaInitFit NULL CoTiMA fit object Object to which all single ctsem fits of

primary studies has been assigned to
(i.e., what has been returned by
ctmaInit)

primaryStudyList NULL list of primary
studies

A list of primary studies compiled with
ctmaPrep that containes a subset of
studies included in ctmaInitFit. Useful
to exclude studies without the need to
use ctmaInit again.

cluster NULL vector of same
length as number
of primary studies

Vector with cluster variables (e.g.,
countries), e.g., c(1, 1, 1, 3, 3, 6,
7, 8). Has to be set up carfully. Will
be included in ctmaPrep later.

activeDirectory path used
to create
ctmaInit-
Fit
object

path to directory Specifies the directory where required
files are found and saved. Should end
with “/”.

activateRPB FALSE FALSE/ TRUE Messages (warning, finished fitting)
could be send to mobile phone if TRUE.

digits 4 value > 0 Rounding used in output.
drift NULL

(=all)
vector (!) of
rowwise drift
matrix elements

Labels for drift effects that should or
should not be included. Have to be
either of the type V1toV2 or 0 for effects
to be excluded, which is usually not
recommended, e.g., c(“V1toV1”,
“V2toV1”, 0, “V2toV2”)

invariantDrift NULL
(=all)

vector of drift
effects

Labels for drift effects that should be
aggregated. Have to be of the type
V1toV2, e.g., c(“V2toV1”)
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ctmaFit (EPIC -BiG-Power) Fits a CoTiMA model.
moderatedDrift NULL

(=all)
vector of drift
effects

Labels for drift effects that should be
moderated. Have to be of the type
V1toV2, e.g., c(“V2toV1”). Is only used
if moderators are specified.

equalDrift NULL vector of 0 or 2 or
more drift effects

Labels for drift effects that should be
set equal. Have to be of the type
V1toV2, e.g., c(“V2toV1”, “V1toV2”).
Is useful, for example, to test if the
sizes of cross effects are statistically
different.

mod.number NULL vector of positions
of moderators

The position(s) of the moderator(s) in
the the vector of moderator values
compiled with ctmaPrep, which should
be used in a moderated CoTiMA, e.g.,
c(1, 3).

mod.type “cont” “cont” or “cat” Type of moderator(s). Categorical and
continuous moderators could not be
used in combination, but more than
one continuous or more than one
categorical moderator is possible.

mod.names NULL (vector of)
character object(s)

Names used to label moderators in the
output .

indVarying FALSE TRUE / FALSE Specifies a random (manifest) intercept
model. Still experimental.

coresToUse 1 value > 0 or < 0 The number of cores (threads) to be
used for fitting. If a negative values is
specified, the value is subtracted from
available cores, else the value sets the
number of cores to be used. Should
usually be 1 on Windows OS.

scaleTI NULL
(=FALSE)

TRUE / FALSE With the move from the omx
(OpenMX) version of ctsem to the
stanct (stan) version, CoTiMA moved
from fitting a multi group model to a
model in which the groups are
represented by dummy variables.
These are internally handled as time
independent (TI) predictors, and
scaleTI specifies whether or not these
dummy variables should be
standardized. Usually not
recommended and set to FALSE by
taking the FALSE value from the
CoTiMAStanctArgs list, which could also
be used to specify more stanct fitting
parameters.

scaleMod NULL
(=FALSE)

TRUE / FALSE Whether or not moderators should be
standardized. Not recommended for
categorical moderators, but
recommended for continuous
moderators. The default value FALSE is
taken from the CoTiMAStanctArgs list,
which could also be used to specify
more stanct fitting parameters
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ctmaFit (EPIC -BiG-Power) Fits a CoTiMA model.
scaleClus NULL

(=TRUE)
TRUE / FALSE These are internally handled as time

independent (TI) predictors, and
scaleClus specifies whether or not
these dummy variables should be
standardized. TRUE (default) yields
avgerage drift estimates, FALSE yields
drift estimates of last cluster. Not that
the last cluster could represent all
clusters that have a single member
only. The default value TRUE is taken
from the CoTiMAStanctArgs list, which
could also be used to specify more
stanct fitting parameters

scaleTime NULL
(=FAlSE)

value > 0 Wether or not the time scale used for
delta_ti should be changed.For
example, scaleTime=1/12 could change
the time scale from months to years. It
is usually recommended to avoid
delta_ti larger than 6. The default
value FALSE is taken from the
CoTiMAStanctArgs list, which could also
be used to specify more stanct fitting
parameters.

optimize TRUE TRUE / FALSE The optimize argument is passed to
ctStanFit. If FALSE, Bayesian
estimations is used. The chosen
sampler is conditional on the nopriors
argument. Note that this works
differently than the optimise argument
of ctSatFit.

nopriors TRUE TRUE / FALSE Consequences of TRUE or FALSE are
conditional on the optimize argument.
optimize=TRUE & nopriors=TRUE
implies maximum likelihood
estimation, optimize=TRUE &
nopriors=FALSE implies maximum a
posteriori estimation, optimize=FALSE
& nopriors=TRUE implies Bayesian
estimation using HMC (Hamiltonian
Monte Carlos sampler), and
optimize=FALSE & nopriors=FALSE
implies Bayesian estimation using
NUTS (No U-Turn Sampler).

finishsamples NULL
(=1000)

values > 0 The finishsamples argument is passed
to ctStanFit. It specifies the number of
samples to draw for final results
computation. Larger (e.g., 10.000)
values make results more exactly
replicable. Larger values are
recommended befor manuscripts are
submitted. Very large values (e.g.,
100.000) might be helpful if very small
effects (e.g., 0.0002) result from
estimation.
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ctmaFit (EPIC -BiG-Power) Fits a CoTiMA model.
iter NULL

(=1000)
The iter argument is passed to
ctStanFit. It specifies the number of
iterations used for Bayesian estimation,
half of which will be devoted to
warmup.

chains NULL (=2) The chains argument is passed to
ctStanFit and specifies the number of
chains to be used for Bayesian
estimation.

verbose NULL 0, 1, or 2 The verbose argument is passed to
ctStanFit. Higher values print more
information during model fit.

allInvModel FALSE TRUE / FALSE Whether or not a model should be
tested in which all (!) parameters are
assumed to be invariant across
primiary studies. If set TRUE, other
specifications (e.g., speficied with the
equalDrift argument) will be ignored.
An all invariant model is also used by
ctmaPower.

customPar TRUE TRUE / FALSE If set TRUE some starting values usually
used by ctSatFit will be used by
CoTiMA specific settings. Not
recommended to be used in
combination with Bayesian estimation.
It was introduced to improve handling
of large values used in delta_ti.
Setting it to FALSE and use scaleTime
instead could be a better alternative if
estimation problems will nevertheless
occur.

ctmaFitList (plotting) Informs the plot function that more
than a single CoTiMA fit object should
be plotted.

Argument Default Possible Values Explanation

... nothing CoTiMA fit objects
separated by
commas

For example, ctmaFitList(object1,
object2).

ctmaGetPub (-) Retrieves publication and citation
indices for authors from Google
Scholar, which could be further
processed with ctmaPub.

Argument Default Possible Values Explanation
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ctmaGetPub (-) Retrieves publication and citation
indices for authors from Google
Scholar, which could be further
processed with ctmaPub.

authorList NULL List of vectors with
2 elements

Contains information about authors’
names and their Google Scholar https
address (or their user ID), e.g., list(
c("Wilmar B.; Schaufeli",
"https://scholar.google.de/citations-
?hl=en&user=w1tHcj4AAAAJ"),
c("Maureen; Dollard",
"user=J6oH3rgAAAAJ") ) ).
Authors’ surnames are separated from
given names or initials by a semicolon!

flush FALSE TRUE / FALSE Argument is handed over to scholar R
package. If TRUE, the cache will be
cleared and the data reloaded from
Google Scholar. Google Scholar will
limit the retrieval of information or
even suspend it for a while if the cache
is flushed too frequently.

yearsToExclude NULL (vector of) years to
exclude

Recommended to leave as NULL. Years
could be excluded later when using
ctmaPub.

ctmaInit (EPI C-BiG-Power) Fits a ctsem model to a list of primary
studies prepared by ctmaPrep.

Argument Default Possible Values Explanation

primaryStudies NULL list A list created with ctmaPrep that
containes all information (e.g., empcovi,
delta_ti, sampleSizei etc.) relevant for
ctmaInit and subsequent analyses.

activeDirectory NULL character string Specifies the directory where required
files are found and saved. Should end
with “/”. For example,
“/Users/GDC/CoTiMA/”

activateRPB FALSE FALSE/ TRUE Messages (warning, finished fitting)
could be send to mobile phone if
TRUE.

checkSingleStudy-
Results

TRUE TRUE / FALSE If yes, displays estimates from single
study ctsem models and waits for user
input to continue. Useful to check
estimates before they are saved.

digits 4 value > 0 Rounding used in output.
n.latent NULL value > 0 Number of latent variables.
n.manifest 0 (=

n.latent)
value ≥ n.latent Number of manifest variables.

lambda NULL (=
identity
matrix)

n.latent ×
n.manifest matrix

Matrix with pattern of fixed (=1) or
free (any string) loadings.

manifestVars NULL (=
0)

n.manifest ×
n.manifest matrix

Matrix with error(co-)variances of
manifest indicators.
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ctmaInit (EPI C-BiG-Power) Fits a ctsem model to a list of primary
studies prepared by ctmaPrep.

drift NULL
(=all)

vector (!) of
rowwise drift
matrix elements

Labels for drift effects that should or
should not be included. Have to be
either of the type V1toV2 or 0 for effects
to be excluded, which is usually not
recommended, e.g., c(“V1toV1”,
“V2toV1”, 0, “V2toV2”)

doPar 1 integer value > 0 Fits each model doPar times in parallel
mode and returns best single model fit.
In each of the parellel fit attempts,
coresToUse is set to 1 to avoid
conflicting processes. Probably does
not work in Windows machines. The
number of parallel processes is limited
to all available threads (cores) minus 1,
and if the value assigned to doPar is
larger, multiple parallel fits are done
sequentially.

equalDrift NULL vector of 0 or 2 or
more drift effects

Labels for drift effects that should be
set equal. Have to be of the type
V1toV2, e.g., c(“V2toV1”, “V1toV2”).
Is useful, for example, to test if the
sizes of cross effects are statistically
different.

indVarying FALSE TRUE / FALSE Specifies a random (manifest) intercept
model. Works only if all primary
studies have 3 or more waves and no
missing values (i.e., variables) exist

saveRawData list() list(saveRawData-
$studyNumbers,
saveRawData$file-
Name,
saveRawData-
$row.names,
saveRawData-
$col.names,
saveRawData$sep,
saveRawData$dec)

A list with required information to
save generated pseudo raw data.
Mighgt be usefull for methodological
research questions. For example,
list("saveRawData$studyNumbers = c(1:
20), "saveRawData$fileName" =
"pseudoRaw", "saveRawData$row.names"
= FALSE, "saveRawData$col.names" =
TRUE, "saveRawData$sep" = " ",
"saveRawData$dec" = ".")

coresToUse 1 value > 0 or < 0 The number of cores (threads) to be
used for fitting. If a negative values is
specified, the value is subtracted from
available cores, else the value sets the
number of cores to be used. Should
usually be 1 on Windows OS.

silentOverwrite FALSE TRUE / FALSE Whether or not to prompt user
preventing undesired overwriting of
existing single study fit files (requested
via saveSingleStudyModelFit)

saveSingleStudy-
ModelFit

c() vector with
filename followed
by the numbers of
studies for which
the fit is saved

Save the fit of single study ctsem
models (could save a lot of time
afterwards if the fit is loaded, e.g.
saveSingleStudyModelFit=c("myModel",
1, 4, 5, 6:100)
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ctmaInit (EPI C-BiG-Power) Fits a ctsem model to a list of primary
studies prepared by ctmaPrep.

loadSingleStudy-
ModelFit

c() vector with
filename followed
by the numbers of
studies for which
the fit is saved

Load the fit of single study ctsem
models, e.g.
loadSingleStudyModelFit=c("myModel",
1, 4, 5, 6:100). This is useful, e.g, if
primary studies aree added to the pool
of primary studies. Only the added
studies will be fitted, the previously
fitted models are loaded, and all is
then stored in the resulting ctmainit
fit object.

scaleTime NULL
(=FAlSE)

value > 0 Wether or not the time scale used for
delta_ti should be changed.For
example, scaleTime=1/12 could change
the time scale from months to years. It
is usually recommended to avoid
delta_ti larger than 6. The default
value FALSE is taken from the
CoTiMAStanctArgs list, which could also
be used to specify more stanct fitting
parameters.

optimize TRUE TRUE / FALSE The optimize argument is passed to
ctStanFit. If FALSE, Bayesian
estimations is used. The chosen
sampler is conditional on the nopriors
argument. Note that this works
differently than the optimise argument
of ctSatFit.

nopriors TRUE TRUE / FALSE Consequences of TRUE or FALSE are
conditional on the optimize argument.
optimize=TRUE & nopriors=TRUE
implies maximum likelihood
estimation, optimize=TRUE &
nopriors=FALSE implies maximum a
posteriori estimation, optimize=FALSE
& nopriors=TRUE implies Bayesian
estimation using HMC (Hamiltonian
Monte Carlos sampler), and
optimize=FALSE & nopriors=FALSE
implies Bayesian estimation using
NUTS (No U-Turn Sampler).

finishsamples NULL
(=1000)

values > 0 The finishsamples argument is passed
to ctStanFit. It specifies the number of
samples to draw for final results
computation. Larger (e.g., 10.000)
values make results more exactly
replicable. Larger values are
recommended befor manuscripts are
submitted. Very large values (e.g.,
100.000) might be helpful if very small
effects (e.g., 0.0002) result from
estimation.
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ctmaInit (EPI C-BiG-Power) Fits a ctsem model to a list of primary
studies prepared by ctmaPrep.

chains NULL (=2) values > 0 The chains argument is passed to
ctStanFit and specifies the number of
chains to be used for Bayesian
estimation.

iter NULL
(=1000)

values > 0 The iter argument is passed to
ctStanFit. It specifies the number of
iterations used for Bayesian estimation,
half of which will be devoted to
warmup.

verbose NULL 0, 1, or 2 The verbose argument is passed to
ctStanFit. Higher values print more
information during model fit.

customPar TRUE TRUE / FALSE If set TRUE some starting values usually
used by ctSatFit will be used by
CoTiMA specific settings. Not
recommended to be used in
combination with Bayesian estimation.
It was introduced to improve handling
of large values used in delta_ti.
Setting it to FALSE and use scaleTime
instead could be a better alternative if
estimation problems will nevertheless
occur.

ctmaPower (EPIC-BiG-Power ) Informs the plot function that more
than a single CoTiMA fit object should
be plotted.

Argument Default Possible Values Explanation

ctmaInitFit NULL CoTiMA fit object Object to which all single ctsem fits of
primary studies has been assigned to
(i.e., what has been returned by
ctmaInit)

activeDirectory path used
to create
ctmaInit-
Fit
object

path to directory Specifies the directory where required
files are found and saved. Should end
with “/”.

statisticalPower c() vector Vector of requested statistical power
values, e.g. c(.95, .80)

failSafeN NULL value > 0 A sample size used to determine across
which time intervals expected effects
become not significant. If not specified,
the avergae sample size of primary
studies will be used.

failSafeP NULL value between 0
and 1

A p-value used to determine across
which time intervals expected effects
become not significant. If not specified
.01 will be used.
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ctmaPower (EPIC-BiG-Power ) Informs the plot function that more
than a single CoTiMA fit object should
be plotted.

timeRange NULL vector with 3
values

Specifies the time range across which
statistical power etc will be computed.
A vector with 3 values: sarting point,
end point, step witdh, e.g. c(0, 50,
1). if not specified, c(0, 1.5*maxDelta,
1) will be used, with 1.5*maxDelta
indicating that the end point is 1.5
times the longest time interval among
primary studies.

useMBESS FALSE TRUE / FALSE If TRUE, the MBESS package is used to
calculate statistical power (slower).
Otherwise, use the internal CoTiMA
function (faster).

coresToUse 1 value > 0 or < 0 The number of cores (threads) to be
used for fitting. If a negative values is
specified, the value is subtracted from
available cores, else the value sets the
number of cores to be used. Should
usually be 1 on Windows OS.

digits 4 value > 0 Rounding used in output.
indVarying FALSE TRUE / FALSE Specifies a random (manifest) intercept

model. Works only if all primary
studies have 3 or more waves and no
missing values (i.e., variables) exist

activateRPB FALSE FALSE/ TRUE Messages (warning, finished fitting)
could be send to mobile phone if TRUE.

silentOverwrite FALSE TRUE / FALSE Whether or not to prompt user
preventing undesired overwriting of
existing fit files (requested via
saveAllInvFit or saveAllInvWOSingFit)

loadAllInFit c() character sting Load the fit of a CoTiMA model with
all effects invaraint across primary
studies, e.g.
loadAllInvFit=c("myAllInvariantModel")

saveAllInFit c() character sting Save the fit of a CoTiMA model with
all effects invaraint across primary
studies, e.g.
saveAllInvFit=c("myAllInvariantModel")

loadAllInvWOSingFit c() character sting not yet operational
saveAllInvWOSingFit c() character sting not yet operational
skipScaling TRUE FALSE / TRUE If FALSE, combined raw data are

standardized again. Although pseudo
raw data for each primary study have
variance = 1.0, this is not the case if
they are combined into the single data
set that is used to compute the model
with all effects being invariant. This is
because variance is computed with
denominator N - 1. Could be corrected
by setting skipScaling to FALSE, but
usually has little practical
consequences.
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ctmaPower (EPIC-BiG-Power ) Informs the plot function that more
than a single CoTiMA fit object should
be plotted.

useSampleFraction NULL value between 100
and 0

Analyze only a fraction of the overall
sample. Could help speeding up
debugging. Provided as percent (e.g.,
useSampleFraction=30 uses 30% of the
overall sample size)

optimize TRUE TRUE / FALSE The optimize argument is passed to
ctStanFit. If FALSE, Bayesian
estimations is used. The chosen
sampler is conditional on the nopriors
argument. Note that this works
differently than the optimise argument
of ctSatFit.

nopriors TRUE TRUE / FALSE Consequences of TRUE or FALSE are
conditional on the optimize argument.
optimize=TRUE & nopriors=TRUE
implies maximum likelihood
estimation, optimize=TRUE &
nopriors=FALSE implies maximum a
posteriori estimation, optimize=FALSE
& nopriors=TRUE implies Bayesian
estimation using HMC (Hamiltonian
Monte Carlos sampler), and
optimize=FALSE & nopriors=FALSE
implies Bayesian estimation using
NUTS (No U-Turn Sampler).

finishsamples NULL
(=1000)

values > 0 The finishsamples argument is passed
to ctStanFit. It specifies the number of
samples to draw for final results
computation. Larger (e.g., 10.000)
values make results more exactly
replicable. Larger values are
recommended befor manuscripts are
submitted. Very large values (e.g.,
100.000) might be helpful if very small
effects (e.g., 0.0002) result from
estimation.

iter NULL
(=1000)

values > 0 The iter argument is passed to
ctStanFit. It specifies the number of
iterations used for Bayesian estimation,
half of which will be devoted to
warmup.

chains NULL (=2) values > 0 The chains argument is passed to
ctStanFit and specifies the number of
chains to be used for Bayesian
estimation.

verbose NULL 0, 1, or 2 The verbose argument is passed to
ctStanFit. Higher values print more
information during model fit.
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ctmaPower (EPIC-BiG-Power ) Informs the plot function that more
than a single CoTiMA fit object should
be plotted.

customPar TRUE TRUE / FALSE If set TRUE some starting values usually
used by ctSatFit will be used by
CoTiMA specific settings. Not
recommended to be used in
combination with Bayesian estimation.
It was introduced to improve handling
of large values used in delta_ti.
Setting it to FALSE and use scaleTime
instead could be a better alternative if
estimation problems will nevertheless
occur.

ctmaPub (-) Computes publication indices for the
group of authors of a study (augments
ctmaGetPub).

Argument Default Possible Values Explanation

getPubObj NULL Object created
with ctmaPubGet

Publication (and citation) information
of authors.

selectedStudies NULL Vector of study
numbers

Specifies the studies, for which the
groups of authors’ publication
information should be computed.

yearsToExclude NULL (vector of) years to
exclude

Years to be excluded from
computations. For example, the
current year might be excluded
because publication infromations might
not be very reliably. Early years (e.g.,
1900-1960) might be excluded because
they would cause invalid publications
(sometimes this happens in Goofle
Scholar).

targetYear NULL
(=publi-
cation
year)

a positive value If left NULL, all publications before
the year of the authors’ publication
count.

recency 5 a positive value ctmaPub computes 2 indices. For the
first one (NEPP), all years before
targetYear count. For the second one
(NEPPrecency), the years between
targetYear and targetYear - recency
count.

indFUN “sum” any of: "mean",
"sum", "max", "min",
"var"

Specifies the function used to aggregate
an individual author’s publication
numbers, e.g., sum (recommended)
computes the sum of an author’s
publication before targetYear, and var
computes the variance of the number
of publications for an author’s first
year of publication to targetYear.
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ctmaPub (-) Computes publication indices for the
group of authors of a study (augments
ctmaGetPub).

colFUN “mean” any of: "mean",
"sum", "max", "min",
"var"

Specifies the function used to
aggregate a group of authors
(collective) publication numbers, e.g.,
mean computes the mean of all authors’
publication scores (created with indFUN,
e.g., the sums) before targetYear, and
max takes largest of all authors’
publication scores (created with
indFUN, e.g., the sums) to targetYear.

addAsMod FALSE FALSE / TRUE Currently disabled.

ctmaPrep (EPIC-BiG-Power) Combines information of primary
studies into a list object and returns
this list.

Argument Default Possible Values Explanation

selectedStudies NULL vector with integers Vector of primary study numbers
(numeric values with no leading 0; e.g.,
’2’ but not ’02’)
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ctmaPrep (EPIC-BiG-Power) Combines information of primary
studies into a list object and returns
this list.

excludedElements NULL vector with integers Could be used to exclude some
predefined objects from the results
reported. Note that some predefined
objects are strongly defined; they have
to be used in a special way because
they are actually used in subsequent
analyses. Some other objects could be
used at the researcher’s convenience
(information is just collected).
Strongly predefined objects are delta_t
(should be of the type c(NA, NA) in
cases when raw data are provided, with
the number of NAs corresponding to
the number of time intervals),
sampleSize (single number), pairwiseN
(matrix of pairwise N; could be used if
correlation matrix is based on pairwise
N), empcov (correlation matrix),
moderator (vector of numbers; could be
continuous or categorical), alphas
(vector of reliability estimates of the
variables of a primary study),
startValues (vector of start values),
rawData (information about file name
and structure of raw data), empMeans
(means for variables; usually 0), and
empVars (variances for variables;
usually 1.0).
Weakly predefined objects are
studyNumber (intended as a special
number used for the outputs of
subsequently fitted CoTiMA models),
source (intended as vector of authors’
names and publication year), ageM
value intended for indicating the mean
age of participants in a primary study,
malePercen’ (intended as value
indicating the percentage of male
participants in a primary study),
occupation (intended as vector of
character strings representing the
occupations of participants in a
primary study), country (intended as
single character string representing the
country in which a primary study was
conducted), and targetVariables
(intended as vector of character strings
representing information about the
variables used).
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ctmaPrep (EPIC-BiG-Power) Combines information of primary
studies into a list object and returns
this list.

addElements NULL vector of character
strings

Could be use to add user-defined
objects that are handled as the weakly
predefined objects. The major purpose
is to collect information a researcher
regards as important, e.g.
c("Important", "Interesting")

digits 4 value ≥ 0 Rounding used in output.
moderatorLabels NULL vector of character

strings
Vector of Names used to label
moderators in the output e.g.,
c("Mod1", "Control")

moderatorValues NULL list of vectors List of vector of Names (assignments)
used to label moderators in the output
e.g., list(c(1"=Emotional Exhaustion",
"2=Exhaustion"), "continuous")

The plot function, which is described next, works slightly different than
other CoTiMA functions. Like all other CoTiMA functions, some arguments
could be used as always. However, in addition, it is important to note that
several plotting parameters (’fitAddSpecs’) have to be assigned to the CoTiMA
fit-object before plotting it, rather than using plotting paramters as arguments
to the plot function (e.g., CoTiMAInitFitObject$xMax <- 200). This is be-
cause the arguments have different effects conditional on the type of fit-object.
The number of plotting parameters that can be changed in this way is still lim-
ited; we are working on extensions. Further, user-defined plotting parameters
differ for fit objects created with ctmaBiG versus ctmaInit and ctmaFit). Fi-
nally, if problems with plot are encountered, we recommend trying ctmaPlot
instead.

plot/ctmaPlot Generates plots.
Argument Default Possible Values Explanation

ctmaFitObject NULL vector with integers A CoTiMA fit-object created by
ctmaInit, cmtaFit, or ctmaBig.

activeDirectory path used
to create
ctmaInit-
Fit
object

path to directory Specifies the directory where required
files are found and saved. Should end
with “/”.

saveFilePrefix “ctmaPlot” vector of character
strings

Labels for the generated plot, which
might be automatically augmented by
further information (e.g., “ctmaplot
V1toV1,png”)

activateRPB FALSE FALSE/ TRUE Messages (warning, finished fitting)
could be send to mobile phone if TRUE.

plotCrossEffects TRUE TRUE/ FALSE Affects plotting of ctmaInit or ctmaFit
fit-objects only. Plotting of discrete
time cross effects can be suspended.

plotAutoEffects TRUE TRUE/ FALSE Affects plotting of ctmaInit or ctmaFit
fit-objects only. Plotting of discrete
time auto effects can be suspended.
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plot/ctmaPlot Generates plots.
timeUnit "timeUnit

(not
specified)"

vector of character
strings

Affects plotting of ctmaInit or ctmaFit
fit-objects only. Label used for the
x-axis of discrete time plots.

timeRange 1 to 1.5
times the
longest
interval
used in
primary
studies

vector with 3
values: c(xMin,
xMax, stepwidth)

Affects plotting of ctmaInit or ctmaFit
fit-objects only. The range across
which discrete time effects are plotted,
e.g., c(10,. 20, .01) would plot
effects from 10 units of time to 20
using steps of .01. Note that a
stepwidth < 1 could be specified to
obtain more fine-grained figures.

yLimitsForEffects values
slightly
exceeding
min and
max
empirical
effect
sizes

vector with 2
values: c(yMin,
yMax)

Affects plotting of ctmaInit or ctmaFit
fit-objects only. The min and max
values for the y-axis. Setting explicit
values couod be better than relying on
the automatically determined range,
for example, to ensure identical y-axis
across a larger set of plots.

mod.values c(-2-1,
0, 1, 2)

vector with
numbers

Affects plotting of ctmaFit fit-objects
only. The moderator values for which
plots of continuous moderators should
be generated. Correspondes to the
standard deviations below and above
the mean value if the continuous
moderator has was standardized with
scaleMod=TRUE. Does not affect plotting
of categorical moderators.

aggregateLabel “”
(=noth-
ing)

character(s) Affects plotting of ctmaFit fit-objects
only. Symbol to be attached to the
discrete time plot of a ctmaFit
fit-object. In the case of ctmaInit
fit-objects, each study is usually
idetified in the plot with a dot inside
which the study number is shown. In
the case of a ctmaFit fit-object with
aggregated effects, one could use a
symbol, e.g. aggregateLabel=”Σ”.

xLabels NULL vector with
numbers

Affects plotting of ctmaFit fit-objects
only. The numbers indicating the time
intervals on the x-axis are usually
determined automatically. The could
also directly specified, and the values
provided are equally distributed across
the time range used to plot the discrete
time effects, e.g., c(1, 3, 5, 7, 9)
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Argument Default Possible Values Explanation

fitAddSpecs (ctmaBias fit-objects)
CoTiMAFit$xMin 0 value ≥ 0 Internally, the x axis ranges from 0 to

300 (the values shown in the plot are
irrelevant). Setting xMin > 0 creates a
plot where the left part is left out. For
example, if one wants to leave out the
first quarter (i.e. 0 to 300/4 = 0 to 75)
you could set xMin to 75. If one wants
extra space on the right hand side of
the plot, one could lift xMax to values
larger than 300, e.g.,c CoTiMAFit$xMax
<- 400.

CoTiMAFit$xMax 300 value ≥ 0 see above

fitAddSpecs (ctmaInit & ctmaFit fit-objects) Generates discrete time effect plots.
Argument Default Possible Values Explanation

CoTiMAFit$col “grey” &
“black”
for
ctmaInit
&
ctmaFit
fit-
objects,
respec-
tively.

R-type color code Sepcifies the color of the curve showing
the discrete time affects across time,
e.g., CoTiMAFit$col <- “red”

CoTiMAFit$lwd 1.5 & 2.5
for
ctmaInit
&
ctmaFit
fit-
objects,
respec-
tively.

value ≥ 0 Sepcifies the line width of the curve
showing the discrete time affects across
time, e.g., CoTiMAFit$lwd <- 4

CoTiMAFit$lty 1 & 2 for
ctmaInit
&
ctmaFit
fit-
objects,
respec-
tively.

R-type integer
value ≥ 0

Sepcifies the line type of the curve
showing the discrete time affects across
time, e.g., CoTiMAFit$lty <- 1, with,
e.g., 1 = solid, 2 = dashed, and 3 =
dotted.

CoTiMAFit$xMin min of
timeRange

integer values Limits the displayed range of the
discrete time effects plotted. Should
only be used in combination with the
xLabels argument. Overrides other
setting if multiple fit-objects are
supplied. This is experimental; it is
recommended to set timeRange instead.
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fitAddSpecs (ctmaInit & ctmaFit fit-objects) Generates discrete time effect plots.
CoTiMAFit$xMax max of

timeRange
integer values Limits the displayed range of the

discrete time effects plotted. Should
only be used in combination with the
xLabels argument. Overrides other
setting if multiple fit-objects are
supplied. This is experimental; it is
recommended to set timeRange instead.

CoTiMAFit$dot.type “b” R-type characters Type of the plot. Use “p” for points, “l”
for lines, “b” for both, “c” for the lines
part alone of “b” etc.

... to be continued
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